
Active Learning for Pipeline Models

Dan Roth and Kevin Small
Department of Computer Science

University of Illinois at Urbana-Champaign
{danr, ksmall}@uiuc.edu

Abstract

For many machine learning solutions to complex ap-
plications, there are significant performance advantages
to decomposing the overall task into several simpler
sequential stages, commonly referred to as a pipeline
model. Typically, such scenarios are also characterized
by high sample complexity, motivating the study of ac-
tive learning for these situations. While most active
learning research examines single predictions, we ex-
tend such work to applications which utilize pipelined
predictions. Specifically, we present an adaptive strat-
egy for combining local active learning strategies into
one that minimizes the annotation requirements for the
overall task. Empirical results for a three-stage entity
and relation extraction system demonstrate a significant
reduction in supervised data requirements when using
the proposed method.

Introduction
Decomposing complex classification tasks into a series of
sequential stages, where the local classifier at a specified
stage is explicitly dependent on the predictions from the
previous stages, is a common practice in many engineer-
ing disciplines. In the machine learning and natural lan-
guage processing communities, this widely used paradigm
is commonly referred to as a pipeline model (Chang, Do,
& Roth 2006; Finkel, Manning, & Ng 2006). For exam-
ple, consider the relation extraction subtask of information
extraction where the goal is to extract named relationships
between entities in a given text. In this situation, relation
classification is often the final stage of a pipeline consisting
of previous stages such as phrase segmentation and named
entity classification as seen in Figure 1. Furthermore, these
stages may be preceded by other simpler related natural lan-
guage processing tasks such as part of speech tagging.

The primary motivation for modeling complex tasks as
a pipelined process is the difficulty of solving such appli-
cations with a single monolithic classifier; that expressing a
problem such as relation extraction directly in terms of input
text will result in a complex function that may be impossi-
ble to learn. A second aspect of such domains is the corre-
sponding high cost associated with obtaining sufficient la-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

beled data for good learning performance. The active learn-
ing protocol offers one promising solution to this dilemma
by allowing the learning algorithm to incrementally select
unlabeled examples for labeling by the domain expert with
the goal of maximizing performance while minimizing the
labeling effort (Cohn, Ghahramani, & Jordan 1996). While
receiving significant recent attention, most active learning
research focuses on new algorithms as they relate to a single
classification task. This work instead assumes that an active
learning algorithm exists for each stage of a pipelined learn-
ing model and develops a strategy that jointly minimizes the
annotation requirements for the pipelined process.

This paper presents a general method for combining sepa-
rate active learning strategies from multiple pipelined stages
into a single strategy that exploits properties particular to
pipeline models. Specifically, we propose a criteria that
begins by preferring instances which most benefit early
pipeline stages until they are performing sufficiently well, at
which point instances are selected which target later stages
of the pipeline. This method attempts to reduce error prop-
agation and supply all pipeline stages with reasonably error
free input. Furthermore, we apply this method to a three
stage named entity and relation extraction system, demon-
strating significant reductions in annotation requirements.

Figure 1: A three-stage pipeline model for named entity and
relation extraction

Preliminaries
Learning Pipeline Models
Following the standard classification task, let x ∈ X rep-
resent members in an input domain and y ∈ Y represent
members of an output domain where we require a predic-
tion function h : X → Y . This work specifically utilizes
classifiers based upon a feature vector generating procedure
Φ(x) → x and generates the output assignment using a
scoring function f : Φ(X) × Y → R such that the pre-
diction is stated as ŷ = h(x) = argmaxy′∈Y f(x, y′). In a
pipeline model, each stage d = 1, . . . , D has access to the
input instance in addition to the classifications from all pre-
vious stages, Φ(d)(x, ŷ(0), . . . , ŷ(d−1)) → x(d). Each stage
of a pipelined learning process takes m training instances
S(d) =

{
(x(d)

1 , y
(d)
1), . . . , (x(d)

m , y
(d)
m)

}
as input to a learn-

ing algorithm A(d) and returns a classifier, h(d), which min-
imizes the respective loss function of the dth stage. Note
that each stage may vary in complexity from a single bi-
nary prediction, y(d) ∈ {−1, 1}, to a multiclass predic-
tion, y(d) ∈ {ω1, . . . , ωk}, to a structured output predic-
tion, y(d) ∈ Y(d)

1 × · · · × Y(d)
ny . Once each stage of the

pipeline model classifier is learned, global predictions are
made sequentially with the expressed goal of maximizing
performance on the overall task,

ŷ = h(x) =

{
argmax
y′∈Y(d)

f (d)
(
x(d), y′

)}D

d=1

. (1)

Active Learning
Active learning describes the protocol where the learner
maintains the ability to select examples from an unlabeled
data source Su with the goal of selecting instances which
will most rapidly improve its hypothesis. The key differ-
ence between active learning and standard supervised learn-
ing is a querying function,Q, which when provided with the
data S and the learned classifier h returns a set of unlabeled
instances Sselect ⊆ Su. These selected instances are la-
beled and added to the supervised training set Sl used to up-
date the learned hypothesis. Example selection criteria used
for single predictions with a single classifier include min-
imizing uncertainty (Cohn, Ghahramani, & Jordan 1996;
Tong & Koller 2001) and maximizing expected error reduc-
tion (Roy & McCallum 2001).

The work in this paper requires that all querying func-
tions (one for each stage) determine instance selection using
an underlying query scoring function q : x → R such that
instances with smaller scoring function values are selected,

Q : x? = argmin
x∈Su

q(x). (2)

For notational convenience, we assume that the query scor-
ing function only requires the instance x to return a score
and implicitly has access to facilities required to make this
determination (e.g. f , h, Φ, properties of Y , etc.). Further-
more, in the pipeline setting, we require that each q(d) be of
similar range and shape such that the values may be effec-
tively compared and combined.

Active Learning for Pipeline Models
Given a pipeline model and a query scoring function for each
stage of the pipeline, q(d), this work develops a general strat-
egy for combining local query scoring functions into a joint
querying function for the global pipeline task of the form

Qpipeline : x? = argmin
x∈Su

D∑
d=1

β(d) · q(d)(x). (3)

Based upon this formulation, the goal is to set the values of
βt for each querying phase of the active learning protocol
by exploiting properties of pipeline models. Some observed
properties of a well designed pipeline which most strongly
affect selecting values for βt include:

1. The results of earlier stages are useful, and often neces-
sary, for later stages.

2. Earlier stages are easier to learn than later stages.
3. Errors from early stages will propagate to later stages.

To design a global querying function for such architec-
tures, examination of the pipeline model assumptions is re-
quired. Given a sequence of pipelined functions, the ideal-
ized global prediction function is stated by

ŷ = argmax
y′∈Y(1)×···×Y(D)

D∑
d=1

π(d) · f (d)
(
x(d),y′

)
(4)

where π is used to determine the relative importance associ-
ated with correct predictions for each stage of the pipeline,
noting that in most cases π = [0, . . . , 0, 1]. Comparing
equation 4 to the pipelined prediction function of equation 1,
we see that the pipeline model assumption is essentially
that the learned function for each stage abstracts sufficient
information such that each stage can be treated indepen-
dently and only the predictions are required to propagate
information between stages. Naturally, this alleviates the
need to predict joint output vectors with interdependent vari-
ables and will result in a much lower sample complexity
if the assumption is true. However, to satisfy the pipeline
model assumption, we first observe that each stage d pos-
sesses a certain degree of robustness to noise from the in-
put Φ(d)(x, ŷ(0), . . . , ŷ(d−1)). If this tolerance is exceeded,
stage d will no longer make reliable predictions and will lead
to errors cascading to later stages. This notion results in the
prime criteria for designing a querying function for pipeline
models, that early stages must be performing sufficiently
well before later stages influence the combined querying
function decision. Therefore, the global querying function
should possess the following properties:

1. Early stages should be emphasized for earlier iterations of
active learning, ideally until learned perfectly.

2. Significant performance improvement at stage d implies
that stages 1, . . . , (d− 1) are performing sufficiently well
and stage d should be emphasized.

3. Conversely, lack of performance improvement at stage d
implies that stages 1, . . . , (d− 1) are not performing well
and should be emphasized by the querying function.

The first criteria is trivial to satisfy by setting β0 =
[1, 0, . . . , 0]. The remaining criteria are more difficult as
an estimate of querying function performance at each stage
is required to update β without labeled data for cross-
validation. (Donmez, Carbonell, & Bennett 2007) prescribe
such a procedure in the setting of determining crossover
points with querying functions specifically suitable for two
different operating regions of the active learning proto-
col for a single binary prediction. This method calculates
the average expected error over Su after each iteration,
ε̂ = (

∑
x∈Su

E[(ŷ − y)2|x])/|Su| where E[(ŷ − y)2|x] =∑
y∈Y L0/1(ŷ, y)P (y|x) and L0/1 is the 0/1 loss function.

Once the change in expected error is small, ∆ε̂
∆t < δ, the

current configuration is deemed to be achieving diminishing
returns and the second querying function should be used.

Our work derives an analogous method in the context of
pipeline models, where operating regions correspond to the
segment of the pipeline being emphasized. The first obser-
vation is that we cannot directly extend the aforementioned
procedure as the loss function at each stage is not neces-
sarily L0/1 and it is difficult to accurately estimate P (y|x)
for the complex classifiers comprising each stage. Further-
more, intricate knowledge of these parameters is required to
reasonably specify δ(d). However, a second observation is
that ε̂ is their query scoring function which we generalize to
basing our method on the average of the query scoring func-
tion over the unlabeled data, U (d)

t = (
∑

x∈Su
q(d)(x))/|Su|.

The intuition is that U
(d)
t represents the certainty of f (d) for

each iteration of active learning and once this value stops
increasing between iterations, Q(d) is likely entering an op-
erating region of diminishing returns and should be dis-
counted. Since δ would be difficult to calibrate for multiple
stages and irrevocable crossover points would be undesir-
able in the pipelined case, we opt for an algorithm where
each stage competes with other stages based on the relative
value changes in U (d), resulting in Algorithm 1.

Algorithm 1 begins by taking as input the seed labeled
data Sl, unlabeled data Su, the learning algorithm for each
stage A(d), a query scoring function for each stage q(d), an
update rate parameter λ, and an active learning stopping cri-
teria κ. Lines 2-7 initialize the algorithm by learning an
initial hypothesis h

(d)
0 for each stage, calculating the initial

average query scoring function value U
(d)
0 for each stage,

and setting β0 = [1, 0, . . . , 0]. Line 8 checks if active learn-
ing stopping criteria has been met. If not, lines 9-11 se-
lect instances Sselect according to the current β which are
removed from Su, labeled, and added to Sl. Lines 12-16
update the hypothesis for each stage and calculate the new
values of U

(d)
t for each stage. After ∆t is normalized (line

16), we update the value of β
(d)
t for each stage based on

the relative improvements of U
(d)
t . Finally, β is normal-

ized (line 19) and the process is repeated. Fundamentally,
based upon earlier stated principles, Algorithm 1 assumes
that β = [1, 0, . . . , 0] is the optimal mixing parameter at
t = 0 and tracks this non-stationary parameter over t based
on the feedback provided by (U (d)

t − U
(d)
t−1) at line 15.

Algorithm 1 Active Learning for Pipeline Models

1: Input: Sl,Su,
{
A(d)

}D

d=1
,
{
q(d)

}D

d=1
, λ, κ

2: for d← 1, . . . , D do {initialize algorithm}
3: h

(d)
0 ← A(d)(Sl)

4: U
(d)
0 ←

P
x∈Su

q(d)(x)

|Su|

5: β
(d)
0 ← 0

6: β
(1)
0 ← 1

7: t← 1

8: while !κ do {query new examples}
9: Sselect ← argminx∈Su

∑D
d=1 β

(d)
t−1 · q(d)(x)

10: Su ← Su\Sselect

11: Sl ← Sl ∪ Sselect {expert labels Sselect}

12: for d← 1, . . . , D do {update hypothesis}
13: h

(d)
t ← A(d)(Sl)

14: U
(d)
t ←

P
x∈Su

q(d)(x)

|Su|

15: ∆(d)
t ← U

(d)
t − U

(d)
t−1

16: ∆t ← ∆t

‖∆t‖

17: for d← 1, . . . , D do {update β}
18: β

(d)
t ← β

(d)
t−1 + λ ·∆(d)

t

19: βt ←
βt

‖βt‖
20: t← t + 1

21: Output:
{
h(d)

}D

d=1

A Three-stage Discriminative Entity and
Relation Extraction System

The experimental setting we explore with this protocol is
the three-stage entity and relation extraction system shown
in Figure 1. For each pipeline stage, sentences comprise the
instance space of the learning problem which when selected
are labeled for all pipeline stages. Secondly, each stage re-
quires multiple predictions, thereby being a structured pre-
diction problem for which we follow the active learning
framework of (Roth & Small 2006). Let x ∈ X1×· · ·×Xnx

represent an input instance and y ∈ C(Yny) represent
a structured assignment in the space of output variables
Y1×· · ·×Yny . C : 2Y

∗ → 2Y
∗

represents a set of constraints
that enforces structural consistency on y, making the predic-
tion function ŷC = h(x) = argmaxy′∈C(Yny)f(x,y′).

While active learning often relies upon the use of support
vector machines (Tong & Koller 2001), good results have
also been shown with a regularized version of the structured
Perceptron algorithm (Collins 2002). The regularized struc-
tured Perceptron adds a large margin component heuristi-
cally, requiring thick multiclass separation between the class
activations to determine hypothesis updates. In this case,
f(x,y) = α · Φ(x,y) represents the global scoring func-
tion such that α = (α1, . . . ,α|Y|) is a concatenation of the

Algorithm 2 Regularized Inference Based Training

1: Input: S ∈ {X ∗ × Y∗}m, γ, T
2: α← 0
3: for T iterations do
4: for all (x,y) ∈ S do
5: ŷC ← argmaxy∈C(Yny) α · Φ(x,y)
6: for all i = 1, . . . , ny do
7: if fyi(x, i)− γ < fẏC,i

(x, i) then
8: αyi ← αyi + Φyi(x, i)
9: αẏi ← αẏi − Φẏi(x, i)

10: Output: {fy}y∈Y ∈ H

local αy vectors and Φ(x,y) = (Φ1(x,y), . . . ,Φ|Y|(x,y))
is a concatenation of the local feature vectors, Φy(x,y).
fy(x, i) = αy · Φy(x, i) where αy ∈ Rdy is the learned
weight vector and Φy(x, i) is the local feature vector. Given
that ẏ = argmaxy′∈Y\y fy′(x) corresponds to the highest
activation value such that ẏ 6= y, the learning algorithm for
each stage, A(d), is described by Algorithm 2.

As a discriminative framework, performance is strongly
correlated to the quality of Φ(d). We extract features in a
method similar to (Roth & Yih 2004) except segmentation
is not assumed, but is the first stage in our pipeline. For seg-
mentation, each target word and its context extracts a feature
set including words from a window of size 3 on each side of
the target, bigrams within a window of size 2, and the capi-
talization of directly adjacent words. Furthermore, we check
if either of the previous two words have membership in a list
of male and female names taken from U.S. census data. Fi-
nally for segmentation, we also check membership in a list
of months, days, and cities compiled in advance. For entity
classification, we extract features including the words of the
segment, words within a window of size 2 around the seg-
ment, the segment length, and a capitalization pattern. Sec-
ondly, we check if any word is in a list of cities, countries,
and professional titles compiled in advance. For relation
classification, we first extract a conjunction of the features
used for the two entities, the labels of the two entities, the
length the entities, the distance between them, and member-
ship in a set of extraction patterns (Roth & Yih 2004) (e.g.
Φarg1,prof,arg2(CNN reporter David McKinley) = 1).

Active Entity and Relation Extraction
As stated, this formulation for active learning with pipeline
models requires that each stage of the pipeline has a pre-
defined query scoring function q(d). To design q(d) for
each stage of our system, we build upon previous work
for active learning in structured output spaces (Roth &
Small 2006). This previous work relies upon the decom-
position of structured predictions into a vector of multi-
class predictions and derive active learning querying func-
tions based upon the expected multiclass margin. Defin-
ing ỹ = argmaxy′∈Y\ŷ fy′(x) as the label correspond-
ing to the second highest activation value, the multiclass
classification querying function is Qmulticlass : x? =
argminx∈Su

[fŷ(x)− fỹ(x)].

To extend Qmulticlass to structured predictions, we must
consider the types of predictions made by each stage of
the pipeline. For segmentation, the local scoring function
fsegment outputs an estimate of P (y|xi) for each word in
the input sentence over Y ∈ {begin, inside, outside}. The
constraints C enforce a valid structure by ensuring that in-
side only follows a begin label for BIO segmentation. We
follow (Roth & Small 2006) for locally learnable instances
and use a variant of the average margin where we do not in-
clude high frequency words contained in a stoplist and em-
phasize capitalized words. This results in the segmentation
query scoring function

qsegment =
∑ny

i=1 [fŷC (x, i)− fỹC (x, i)]
ny

. (5)

For entity classification, we begin with segmentation from
the previous stage and classify these segments into Y ∈
{person, location, organization}. In this case, there are
a small number of entities per sentence and we empirically
determined that the least certain entity best captures the un-
certainty of the entire sentence. The resulting query scoring
function is stated by

qNER = min
i=1,...,ny

[fŷ(x, i)− fỹ(x, i)] . (6)

Finally, relation classification begins with named entity clas-
sifications and label each entity pair with Y ∈ {located in,
work for, org based in, live in, kill} × {left, right}+
no relation. Once again, we find that the least certain sin-
gle instance works best for determining which sentence to
annotate, but exploit the knowledge that the no relation clas-
sification is by far the dominant class and will receive ade-
quate annotation regardless of the querying function. There-
fore, we define Y+ = Y\no relation and do not consider
this label when calculating the query scoring function,

qrelation = min
i=1,...,ny

[
fŷ+(x, i)− fỹ+(x, i)

]
. (7)

Experimental Results
The data for our experiments was derived from (Roth & Yih
2007), which is an annotation of a set of sentences from
TREC documents. In our data, there are 1,987 sentences
which contain 4,645 entities, and 6,909 intrasentence pairs
of entities. The entity labels include 1,648 person entities,
1,872 location entities, and 858 organization entities. The
relation labels include 420 located in, 394 work for, 451
org based in, 529 live in, and 270 kill.

For active learning experiments, we first selected 287 of
the 1,436 sentences (20%) with at least one active relation
for testing. From the training data, we constructed 10 differ-
ent seed sets of labeled data such that each set contains four
instances of each type of relation in Y+ = Y\no relation,
ignoring direction. Each data point is an average of the ten
different Sl as the initial seed. For each querying phase,
|Sselect| = 1, and labeled instances are added to Sl until
we meet the stopping criteria, κ, of the performance level
of training on all sentences. We present results in terms on
F1 = (2 ∗ precision ∗ recall)/(precision + recall) and
plot every fifteenth point to improve clarity.

In addition to previously defined querying functions, we
also compare the results to a non-adaptive pipeline query-
ing function, Quniform, which sets β =

[
1
D , . . . , 1

D

]
for all

iterations. This querying function can be viewed as a struc-
tured output active learning function that is not aware of the
pipeline assumptions and treats all stages equally. Finally,
we also compare the querying functions to Qrandom which
selects a random instance for each pass of Algorithm 1.

Segmentation
Figure 2 shows the segmentation task results when select-
ing sentences for complete annotation. Note that despite
good results for segmentation, this is not the task that we
are interested in directly, but only for its utility to down-
stream processes. The first important observation is that
bothQuniform andQpipeline perform better thanQrandom,
although Quniform starts by performing worse. The more
important observation is that Qpipeline significantly out-
performs Quniform and Qrandom throughout all phases of
the protocol. The explanation for this phenomena seems
straightforward as Qpipeline emphasizes Qsegment early in
the procedure, to the point that they are virtually identi-
cal early in the process. Another interesting point is that
Qsegment performs better than Qpipeline. Given that this
is the first pipeline stage, this result is not particularly sur-
prising as Qsegment selects sentences as if this was a sin-
gle stage task, which we will see hurts performance of later
stages. However, the final result for segmentation annotation
with Qpipeline is that the effort is reduced by 45%.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 200 400 600 800 1000 1200 1400 1600

F1

labeled data

QsegmentQpipelineQuniformQrandom
!

Figure 2: Experimental results for the segmentation stage of
the pipeline. The proposed querying functionQpipeline out-
performs Quniform and Qrandom, reducing the annotation
effort by 45%. WhileQsegment performs better at this stage,
it will be shown detrimental to downstream processes.

Entity Classification
Figure 3 presents results for the entity classification stage.
For entity classification, once again both Qpipeline and
Quniform perform better than Qrandom with Qpipeline sig-
nificantly outperformingQuniform. A second observation is

that we also includedQsegment to show that there is signifi-
cant value in dynamically changing the query scoring func-
tion weighting as even though Qsegment does well initially,
eventually it reaches a point of diminishing returns and is
discounted in favor of later stages. However, it is also in-
teresting to note that Qsegment still outperforms Quniform,
demonstrating the value of having earlier stages performing
well before emphasizing later stages to reduce error prop-
agation. The final result for entity classification is that by
using Qpipeline, the annotation effort is reduced by 42%.

 0.65

 0.7

 0.75

 0.8

 200 400 600 800 1000 1200 1400 1600
F1

labeled data

QpipelineQsegmentQuniformQrandom
!

Figure 3: Experimental results for the entity classifi-
cation pipeline stage. The proposed querying function
Qpipeline outperforms all other querying functions, includ-
ing Qsegment and reduces the annotation effort by 42%.

Relation Classification
Figure 4 presents results for the relation classification
stage of the pipeline, also measured by F1. As we see,
both Qpipeline and Quniform once again perform better
than Qrandom with Qpipeline significantly outperforming
Quniform. Secondly, both Quniform and Qpipeline require
more queries early in the process than in other stages be-
fore they demonstrate significantly accelerated learning over
Qrandom. This should likely be attributed to the examples
that are selected early in the process are being used to learn
previous stages and improvements for relation classification
is incidental. This delay is reflected in the overall annotation
effort, where we require more examples relative to the seg-
mentation or entity classifications tasks to achieve the same
performance as learning with all of the data. However, we
still achieve an overall savings of 35%. Note that as we
move down the pipeline, we tend to require a greater anno-
tation effort as Qpipeline has to ensure that previous stages
are learned adequately before continuing to the present stage
as each successive stage builds upon the results of previous
stages. A final note is a comparison of these results to (Roth
& Yih 2007), where our final F1 score of 0.57 for the rela-
tion extraction task and 0.83 for the entity extraction task are
competitive with previously reported results. However, our
system does not assume that segmentation is provided and
thereby can be used directly with textual input.

 0.4

 0.45

 0.5

 0.55

 200 400 600 800 1000 1200 1400 1600

F1

labeled data

QpipelineQuniformQrandom
!

Figure 4: Experimental results for the relation classification
pipeline stage. The proposed querying function Qpipeline

reduces the overall annotation effort by 35%.

Related Work
One of the earliest active learning works for more complex
tasks is (Thompson, Califf, & Mooney 1999) which stud-
ies active learning for both natural language parsing and in-
formation extraction from the perspective of assigning un-
certainty based on the reliability of application specific al-
gorithms and is not a general classification framework. In
the context of active learning for named entity classification,
some recent works include (Becker et al. 2005; Jones 2005;
Shen et al. 2004). However, in these works the task is pri-
marily entity classification and the problem is not cast as a
pipeline model. (Culotta & McCallum 2005) looks at infor-
mation extraction framed as a structured output prediction
and performs active learning based on conditional random
fields. While not a pipeline model and not performing re-
lation extraction, this work is interesting as it examines the
benefits of a more sophisticated interaction with the user.

Conclusion
The pipeline model is a widely used paradigm for machine
learning solutions to complex applications, where the over-
all task is decomposed into a sequence of predictions for
which each pipeline stage uses previous predictions as in-
put. For these applications, a second issue is often lack of
sufficient annotated data. This paper prescribes a general
method for combining active learning approaches for each
separate pipeline stage into a joint active learning strategy
that explicitly exploits properties of a pipeline. We demon-
strate the effectiveness of the stated methods on a three stage
named entity and relation extraction system, where we see a
significant reduction in the need for annotated data.

Acknowledgments
The authors would like to thank Ming-Wei Chang, Alex Kle-
mentiev, Nick Rizzolo, and the reviewers for helpful com-
ments regarding this work. This work was supported by NSF

grant ITR IIS-0428472, DARPA funding under the Boot-
strap Learning Program and by MIAS, a DHS-IDS Center
for Multimodal Information Access and Synthesis at UIUC.

References
Becker, M.; Hachey, B.; Alex, B.; and Grover, C. 2005.
Optimising selective sampling for bootstrapping named en-
tity recognition. In ICML Workshop on Multiple Views.
Chang, M.-W.; Do, Q.; and Roth, D. 2006. Multilingual
dependency parsing: A pipeline approach. In Recent Ad-
vances in Natural Language Processing, 195–204.
Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996.
Active learning with statistical models. Journal of Artificial
Intelligence Research 4:129–145.
Collins, M. 2002. Discriminative training methods for hid-
den markov models: Theory and experiments with percep-
tron algorithms. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Culotta, A., and McCallum, A. 2005. Reducing labeling
effort for structured prediction tasks. In Proceedings of the
National Conference on Artificial Intelligence (AAAI).
Donmez, P.; Carbonell, J. G.; and Bennett, P. N. 2007.
Dual strategy active learning. In Proc. of the European
Conference on Machine Learning (ECML).
Finkel, J. R.; Manning, C. D.; and Ng, A. Y. 2006. Solv-
ing the problem of cascading errors: Approximate bayesian
inference for linguistic annotation pipelines. In Proc. of
the Conference on Empirical Methods in Natural Language
Processing (EMNLP).
Jones, R. 2005. Learning to Extract Entities from Labeled
and Unlabeled Text. Ph.D. Dissertation, Carnegie Mellon.
Roth, D., and Small, K. 2006. Margin-based active learn-
ing for structured output spaces. In Proc. of the European
Conference on Machine Learning (ECML).
Roth, D., and Yih, W.-T. 2004. A linear programming
formulation for global inference in natural language tasks.
In Proc. of the Conference on Computational Natural Lan-
guage Learning (CoNLL).
Roth, D., and Yih, W.-T. 2007. Global inference for entity
and relation identification via a linear programming formu-
lation. In Introduction to Statistical Relational Learning.
Roy, N., and McCallum, A. 2001. Toward optimal active
learning through sampling estimation of error reduction. In
Proc. of the International Conference on Machine Learn-
ing (ICML), 441–448.
Shen, D.; Zhang, J.; Su, J.; Zhou, G.; and Tan, C.-L. 2004.
Multi-criteria-based active learning for named entity recog-
nition. In Proc. of the Annual Meeting of the Association
for Computational Linguistics (ACL), 589–596.
Thompson, C. A.; Califf, M. E.; and Mooney, R. J. 1999.
Active learning for natural language parsing and informa-
tion extraction. In Proc. of the International Conference on
Machine Learning (ICML), 406–414.
Tong, S., and Koller, D. 2001. Support vector machine ac-
tive learning with applications to text classification. Jour-
nal of Machine Learning Research 2:45–66.

