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Abstract. In many complex machine learning applications there is a
need to learn multiple interdependent output variables, where knowl-
edge of these interdependencies can be exploited to improve the global
performance. Typically, these structured output scenarios are also char-
acterized by a high cost associated with obtaining supervised training
data, motivating the study of active learning for these situations. Start-
ing with active learning approaches for multiclass classification, we first
design querying functions for selecting entire structured instances, ex-
ploring the tradeoff between selecting instances based on a global margin
or a combination of the margin of local classifiers. We then look at the
setting where subcomponents of the structured instance can be queried
independently and examine the benefit of incorporating structural infor-
mation in such scenarios. Empirical results on both synthetic data and
the semantic role labeling task demonstrate a significant reduction in the
need for supervised training data when using the proposed methods.

1 Introduction

The successful application of machine learning algorithms to many domains is
limited by the inability to obtain a sufficient amount of labeled training data
due to practical constraints. The active learning paradigm offers one promising
solution to this predicament by allowing the learning algorithm to incrementally
select a subset of the unlabeled data to present for labeling by the domain expert
with the goal of maximizing performance while minimizing the labeling effort.
One particularly appropriate family of machine learning applications for active
learning is the scenario where there are multiple learning problems such that
there is a specified relationship between the output variables of the individual
classifiers, described as learning in structured output spaces. In such situations,
the target applications are generally more complex than single classification tasks
and the cost for supervised training data is correspondingly higher.

There are many applications of learning in structured output spaces across
numerous domains, including the semantic role labeling (SRL) task [1]. The
goal for SRL is, given a sentence, to identify for each verb in the sentence which



constituents fill a semantic role and determine the type of the specified argument.
For the example sentence, “I left my pearls to my daughter-in-law in my will,”
the desired output is

[A0 I ][V left ][A1 my pearls ][A2 to my daughter-in-law ][AM−LOC in my will ],

where A0 represents the leaver, A1 represents the item left, A2 represents the
benefactor, and AM-LOC is an adjunct indicating the location of the action. Ex-
amples of specifying structural relationships include declarative statements such
as every sentence must contain exactly one verb or no arguments can overlap.

This paper describes a margin-based method for active learning in struc-
tured output spaces where the interdependencies between output variables are
described by a general set of constraints able to represent any structural form.
Specifically, we study two querying protocols and propose novel querying func-
tions for active learning in structured output spaces: querying complete labels
and querying partial labels. In the SRL example, these two protocols correspond
to requiring the learner to request the labels for entire sentences during the in-
stance selection process or single arguments, such as my pearls, respectively. We
proceed to describe a particular algorithmic implementation of the developed
theory based on the Perceptron algorithm and propose a mistake-driven expla-
nation for the relative performance of the querying functions. Finally, we provide
empirical evidence on both synthetic data and the semantic role labeling (SRL)
task to demonstrate the effectiveness of the proposed methods.

2 Preliminaries

This work builds upon existing work for learning in structured output spaces and
margin-based active learning. We first describe a general framework for model-
ing structured output classifiers, following the approach of incorporating output
variable interdependencies directly into a discriminative learning model [2, 3].
We then proceed by describing previous margin-based active learning approaches
based on the output of linear classifiers [4, 5].

2.1 Structured Output Spaces

For our setting, let x ∈ Xnx represent an instance in the space of input variables
X = (X1, . . . , Xnx

);Xt ∈ Rdt and y ∈ C(Yny ) represent a structured assignment
in the space of output variables Y = (Y1, . . . , Yny

);Yt ∈ {ω1, . . . , ωkt
}. C : 2Y

∗ →
2Y

∗
represents a set of constraints that enforces structural consistency on Y such

that C(Yny ) ⊆ Yny . A learning algorithm for structured output spaces takes
m structured training instances, S = {(x1,y1), . . . , (xm,ym)} drawn i.i.d over
Xnx×C(Yny ) and returns a classifier h : Xnx → Yny . This assignment generated
by h is based on a global scoring function f : Xnx × Yny → R, which assigns
a score to each structured instance/label pair (xi,yi). Given an instance x, the
resulting classification is given by

ŷC = h(x) = argmax
y′∈C(Yny )

f(x,y′). (1)



The output variable assignments are determined by a global scoring function
f(x,y) which can be decomposed into local scoring functions fyt

(x, t) such that
f(x,y) =

∑ny

t=1 fyt(x, t). When structural consistency is not enforced, the global
scoring function will output the value f(x, ŷ) resulting in assignments given by
ŷ = argmaxy′∈Yny f(x,y′). An inference mechanism takes the scoring function
f(x,y), an instance (x,y), and a set of constraints C, returning an optimal as-
signment ŷC based on the global score f(x, ŷC) consistent with the defined output
structure. Specifically, we will use general constraints with the ability to repre-
sent any structure and thereby require a general search mechanism for inference
to enforce structural consistency [6]. As active learning querying functions are
designed to select instances with specific properties, we define the notions of lo-
cally learnable instances and globally learnable instances for exposition purposes.

Definition 1. (Locally Learnable Instance) Given a classifier, f ∈ H, an
instance (x,y) is locally learnable if fyt

(x, t) > fy′(x, t) for all y′ ∈ Y\yt. In this
situation, ŷ = ŷC = y.

Definition 2. (Globally Learnable Instance) Given a classifier, f ∈ H, an
instance (x,y) is globally learnable if f(x,y) > f(x,y′) for all y′ ∈ Y\y. We
will refer to instances that are globally learnable, but not locally learnable as
exclusively globally learnable in which case ŷ 6= ŷC = y.

2.2 Margin-based Active Learning

The key component that distinguishes active learning from standard supervised
learning is a querying function Q which when given unlabeled data Su and
the current learned classifier returns a set of unlabeled examples Sselect ⊆ Su.
These selected examples are labeled and provided to the learning algorithm
to incrementally update its hypothesis. The most widely used active learning
schemes utilize querying functions based on heuristics, often assigning a measure
of certainty to predictions on Su and selecting examples with low certainty.

We denote the margin of an example relative to the hypothesis function as
ρ(x,y, f), noting that this value is positive if and only if ŷC = y and the magni-
tude is associated with the confidence in the prediction. The specific definition
of margin for a given setting is generally dependent on the description of the
output space. A margin-based learning algorithm is a learning algorithm which
selects a hypothesis by minimizing a loss function L : R → [0,∞) using the mar-
gin of instances contained in Sl. We correspondingly define an active learning
algorithm with a querying function dependent on ρ(x,y, f) as a margin-based
active learning algorithm.

The standard active learning algorithm for binary classification, Y ∈ {−1, 1},
with linear functions utilizes the querying function Qbinary [4], which makes di-
rect use of the margin ρbinary(x, y, f) = y ·f(x) by assuming the current classifier
generally makes correct predictions on the training data and selecting those un-
labeled examples with the smallest margin and thereby minimal certainty,

Qbinary : x? = argmin
x∈Su

|f(x)|.



For multiclass classification, a widely accepted definition for multiclass margin
is ρmulticlass(x,y, f) = fy(x) − fẏ(x) where y represents the true label and
ẏ = argmaxy′∈Y\y fy′(x) corresponds to the highest activation value such that
ẏ 6= y [7]. Previous work on multiclass active learning [5] advocates a query-
ing function closely related to this definition of multiclass margin where ŷ =
argmaxy′∈Y fy′(x) represents the predicted label and ỹ = argmaxy′∈Y\ŷ fy′(x)
represents the label corresponding to the second highest activation value,

Qmulticlass : x? = argmin
x∈Su

[fŷ(x)− fỹ(x)].

3 Active Learning for Structured Output

We look to augment the aforementioned work to design querying functions for
learning in structured output spaces by exploiting structural knowledge not avail-
able for individual classifications. Without loss of generality, we assume that yt

represents a multiclass classification.

3.1 Querying Complete Labels

The task of a querying function for complete labels entails selecting instances x
such that all output labels associated with the specified instance will be provided
by the domain expert. Following the margin-based approach for designing query-
ing functions, a reasonable definition of margin for structured output spaces is
ρglobal(x,y, f) = f(x,y)− f(x, ẏC) where ẏC = argmaxy′∈C(Yny )\y f(x,y′). The
corresponding querying function for a structured learner that incorporates the
constraints into the learning model is defined by

Qglobal : x? = argmin
x∈Su

[f(x, ŷC)− f(x, ỹC)],

where ỹC = argmaxy′∈C(Yny )\ŷC f(x,y′). It should be noted that Qglobal does
not require f(x,y) to be decomposable, thereby allowing usage with arbitrary
loss functions. The only requirement is that the inference mechanism is capable
of calculating f(x, ŷC) and f(x, ỹC) for a given structured instance.

However, for many structured learning settings the scoring function and con-
sequently the loss function is decomposable into local classification problems.
Furthermore, it has been observed that when the local classification problems
are easy to learn without regard for structural constraints, directly optimiz-
ing these local functions often leads to a lower sample complexity [3]. As these
findings are predicated on making concurrent local updates during learning, se-
lecting structured examples that make as many local updates as possible may
be desirable for such situations. This observation motivates a querying function
that selects instances based on local predictions, resulting in the margin-based
strategy of selecting examples with a small average local multiclass margin,

Q
local(C)

: x? = argmin
x∈Su

∑ny

t=1[fŷC,t
(x, t)− fỹC,t

(x, t)]
ny

,

where ŷC,t = argmaxy′t∈C(Y) fy′t
(x, t) and ỹC,t = argmaxy′t∈C(Y)\ŷt

fy′t
(x, t).



3.2 Querying Partial Labels

We noted that Qglobal makes no assumptions regarding decomposability of of the
scoring function and Q

local(C)
requires only that the scoring function be decom-

posable in accordance with the output variables. We now examine active learning
in settings where f(x,y) is decomposable and the local output variables can be
queried independently, defined as querying partial labels. The intuitive advan-
tage of querying partial labels is that we are no longer subject to cases where a
structured instance has one output variable with a very informative label, but
the other output variables of the same instance are minimally useful and yet add
cost to the labeling effort. While this configuration is not immediately usable for
applications with a scoring function not easily decomposable into local output
variables that can be independently queried, we will see this approach is very
beneficial in scenarios where such restrictions are possible.

Observing that querying partial labels requires requesting a single multiclass
classification, the naive querying function for this case is to simply ignore the
structural information and use Qmulticlass, resulting in the querying function

Qlocal : (x, t)? = argmin
(x,yt)∈Su

t=1,...,ny

[fŷt
(x, t)− fỹt

(x, t)].

One of the stronger arguments for margin-based active learning is the notion
of selecting instances which attempt to halve the version space with each selec-
tion [4]. A local classifier which either ignores or is ignorant of the structural
constraints maintains a version space described by

Vlocal = {f ∈ H|fyt
(x, t) > fẏt

(x, t);∀(x, y) ∈ Sl}.

If the learning algorithm has access to an inference mechanism that maintains
structural consistency, the version space is only dependent on the subset of pos-
sible output variable assignments that are consistent with the global structure,

Vlocal(C) = {f ∈ H|fyt
(x, t) > fẏC,t

(x, t);∀(x, y) ∈ Sl}

where ẏC,t = argmaxy′t∈C(Y)\yt
fy′t

(x, t). Therefore, if the learning algorithm en-
forces structural consistency within the learning model, we advocate also utiliz-
ing this information to augment Qlocal, resulting in the querying function

Qlocal(C) : (x, t)? = argmin
(x,yt)∈Su

t=1,...,ny

[fŷC,t
(x, t)− fỹC,t

(x, t)].

4 Active Learning with Perceptron

This work specifically utilizes classifiers of a linear representation with parame-
ters learned using the Perceptron algorithm. In this case, f(x,y) = α · Φ(x,y)



represents the global scoring function such that α = (α1, . . . ,α|Y|) is a con-
catenation of the local αy vectors and Φ(x,y) = (Φ1(x,y), . . . , Φ|Y|(x,y)) is
a concatenation of the local feature vectors, Φy(x,y). Utilizing this notation,
fy(x, t) = αy · Φy(x, t) where αy ∈ Rdy is the learned weight vector and
Φy(x, t) ∈ Rdy is the feature vector for local classifications.

Margin-based active learning generally relies upon the use of support vec-
tor machines (SVM) [4, 5]. While there is existing work on SVM for structured
output [8], the incremental nature of active learning over large data sets associ-
ated with structured output makes these algorithms impractical for such uses.
This work builds upon the inference based training (IBT) learning strategy [3, 2]
shown in Table 1, which incorporates the structural knowledge into the learning
procedure. We first modify the IBT algorithm for partial labels by updating only
local components which have been labeled. Secondly, we add a notion of large
margin IBT heuristically by requiring thick separation between class activations.
While this can likely be tuned to improve performance depending on the data,
we simply set γ = 1.0 and require that ‖Φyt(x, t)‖ = 1 through normalization
for our experiments. During learning, we set T = 7 for synthetic data and T = 5
for experiments with the SRL task. To infer ŷC , we use an index ordered beam
search with beam size of 50 for synthetic data and 100 for SRL. Beam search
was used since it performs well, is computationally fast, accommodates general
constraints, and returns a global score ranking which is required for Qglobal.

Table 1. Learning wth Inference Based Feedback (IBT)

Input: S ∈ {X ∗ × Y∗}m, γ, T

Initialize α← 0
Repeat for T iterations

foreach (x,y) ∈ S
ŷC ← argmaxy∈C(Yny ) α · Φ(x,y)

foreach t = 1, . . . , ny such that (x, yt) ∈ Sl

if fyt(x, t)− γ < fẏC,t(x, t)
αyt ← αyt + Φyt(x, t)
αẏt ← αẏt − Φẏt(x, t)

Output: {fy}y∈Y ∈ H

4.1 Mistake-driven Active Learning

A greedy criteria for active learning querying functions makes the most immedi-
ate progress towards learning the target function with each requested label. For
the mistake-driven Perceptron algorithm, a suitable measurement for progress is
to track the number of additive updates for each query. This intuition proposes
two metrics to explain the performance results of a given querying function, av-
erage Hamming error per query, MHamming, and average global error per query,



Mglobal. For a specific round of active learning, the current hypothesis is used
to select a set of instances Sselect for labeling. Once the labels are received, we
calculate the Hamming loss H(h,x) =

∑ny

t=1;(x,yt)∈Sl
IJŷC,t 6= yK and the global

loss G(h,x) = IJŷC 6= yK at the time when the instance is first labeled. IJpK is an
indicator function such that IJpK = 1 if p is true and 0 otherwise. We measure
the quality of a querying function relative to the average of these values for all
queries up to the specific round of active learning.

Noting that only H(h,x) is useful for partial labels, we hypothesize that for
partial label queries or cases of complete label queries where the data sample S
is largely locally separable, the relative magnitude of MHamming will determine
the relative performance of the querying functions. Alternatively, for complete
queries where a significant portion of the data is exclusively globally separable,
Mglobal will be more strongly correlated with querying function performance.

5 Experiments

We demonstrate particular properties of the proposed querying functions by first
running active learning simulations on synthetic data. We then verify practicality
for actual applications by performing experiments on the SRL task.

5.1 Synthetic Data

Our synthetic structured output problem is comprised of five multiclass classi-
fiers, h1, . . . , h5, each having the output space Yt = ω1, . . . , ω4. In addition, we
define the output structure using the following practical constraints:

1. C1 : [h2(x) 6= ω3] ∧ [h5(x) 6= ω1]
2. C2 : At most one ht(x) can output ω2.
3. C3 : For one or more ht(x) to output ω3, at least one ht(x) must output ω1.
4. C4 : ht(x) can output ω4 if and only if ht−1(x) = ω1 and ht−2(x) = ω2.

To generate the synthetic data, we first create four linear functions of the
form wi · x + bi such that wi ∈ [−1, 1]100 and bi ∈ [−1, 1] for each ht. We
then generate five local examples xt ∈ {0, 1}100 where the normal distribution
N (20, 5) determines the number of features assigned the value 1, distributed uni-
formly over the feature vector. Each vector is labeled according to the function
argmaxi=1,...,k[wi ·x+bi] resulting in the label vector ylocal = (h1(x), . . . , h5(x)).
We then run the inference procedure to obtain the final labeling y of the instance
x. If y 6= ylocal, then the data is exclusively globally separable. We control the
total amount of such data with the parameter κ which represents the fraction
of exclusively globally separable data in S. We further filter the difficulty of the
data such that all exclusively globally separable instances have a Hamming error
drawn from a stated normal distribution N (µ, σ). We generate 10000 structured
examples, or equivalently 50000 local instances, in this fashion for each set of
data parameters we use.



Figure 1 shows the experimental results for the described complete querying
functions in addition to Qrandom, which selects arbitrary unlabeled instances
at each step, and Qlocal(C) where an entire structured instance is based upon
the score of a single local classifier to demonstrate that it is prudent to de-
sign querying functions specifically for complete labels. The querying sched-
ule starts as |Sl| = 2, 4, . . . , 200 and slowly increases the step size until |Sl| =
6000, 6100, . . . , 8000 and 5-fold cross validation is performed. The primary ob-
servation for the synthetic data set where κ = 0.0 is that Q

local(C)
performs

better than Qglobal when the data is locally separable. For the data set where
κ = 0.3;N (3, 1), we see that as the data becomes less locally separable, Qglobal

performs better than Q
local(C)

. We also plot MHamming and Mglobal for each
respective querying functions. As expected, when the data is locally separable,
the querying function performance is closely related to MHamming and when the
data is less locally separable, the relative querying function performance is more
closely related to Mglobal. The vertical lines denote when the specified querying
function achieves an accuracy equivalent to the largest accuracy achieved by us-
ing Qrandom. Remembering that there are 8000 training examples, we measure
between 25%− 75% reduction in required training data.

Figure 2 shows our experimental results for partial querying functions on
the synthetic data. We completed experiments with the two partial querying
functions Qlocal and Qlocal(C) in addition to Qrandom on three sets of data.
The querying schedule starts by querying 10 partial labels at a time from |Sl| =
10, 20, . . . , 2000 and increases until the step size is |Sl| = 20000, 21000, . . . , 40000
and once again 5-fold cross validation is performed. The first synthetic data set
is where κ = 0.0 and the data is completely locally separable. In this case, active
learning for both Qlocal and Qlocal(C) perform better than Qrandom. Somewhat
more surprising is the result that Qlocal(C) performs noticeably better that Qlocal

even though they should query similar points for κ = 0.0. The results for the
synthetic data set κ = 0.3;N (3, 1) also demonstrate a similar ordering where
Qlocal(C) outperformsQlocal which in turn outperformsQrandom. Finally, we used
a synthetic data set where κ = 1.0;N (5, 1), meaning that the data is completely
exclusively globally separable and the difference between Qlocal(C) and Qlocal is
most noticable. For this data set, we also plotted MHamming noting that this
value is always greater for Qlocal(C) than Qlocal, which is consistent with our
expectations for MHamming relative to querying function performance. As there
are 40000 training examples for each fold, we show a decrease in necessary data
of between 65%− 79% depending on the specific experiment.

5.2 Semantic Role Labeling

Finally, we also perform experiments on the SRL task as described in the CoNLL-
2004 shared task [1]. We essentially follow the model described in [3] where
linear classifiers fA0, fA1, . . . are used to map constituent candidates to one of
45 different classes. For a given argument / predicate pair, the multiclass classifier
returns a set of scores which are used to produce the output ŷC consistent with
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Fig. 1. Experimental results for the complete label querying problem, noting that the
labeling effort is reduced between 25% − 75% depending on the particular situation.
(a) Active learning curve for κ = 0.0 (b) Active learning curve for κ = 0.3;N (3, 1) (c)
Plot of Mhamming and Mglobal for κ = 0.0 (d) Plot of Mhamming and Mglobal for
κ = 0.3;N (3, 1)

the structural constraints associated with other arguments relative to the same
predicate. We simplify the task by assuming that the constituent boundaries
are given, making this an argument classification task. We use the CoNLL-2004
shared task data, but restrict our experiments to sentences that have greater than
five arguments to increase the number of instances with interdependent variables
and take a random subset of this to get 1500 structured examples comprised of
9327 local predictions. For our testing data, we also restrict ourself to sentences
with greater than five arguments, resulting in 301 structured instances comprised
of 1862 local predictions. We use the same features and the applicable subset of
families of constraints which do not concern segmentation as described by [9].
Figure 3 shows the emperical results for the SRL experiments. For querying
complete labels, we start with a querying schedule of |Sl| = 50, 80, . . . , 150 and
slowly increase the step size until ending with |Sl| = 1000, 1100, . . . , 1500. For
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Fig. 2. Experimental results for the partial label querying problem, noting that the
labeling effort is reduced between 65% − 79% depending of the particular situation.
(a) Active learning curve for κ = 0.0 (b) Active learning curve for κ = 0.3;N (3, 1) (c)
Active learning curve for κ = 1.0;N (5, 1) (d) Plot of Mhamming for κ = 1.0;N (5, 1).

the complete labeling case, Q
local(C)

performs better than Qglobal, implying that
the data is largely locally separable which is consistent with the findings of [3].
Furthermore, both functions perform better than Qrandom with approximately a
35% reduction in labeling effort. For partial labels, we used a querying schedule
that starts at |Sl| = 100, 200, . . . , 500 and increases step size until ending at
|Sl| = 6000, 7000, . . . , 9327. In this case, Qlocal(C) performs better than Qlocal

and Qrandom, requiring only about half of the data to be labeled.

6 Related Work

Some of the earliest works on active learning in a structured setting is the work
in language parsing including [10–12], which utilize specific properties of the
parsing algorithms to assign uncertainty values to unlabeled instances. There
has also been work on active learning for hidden markov models (HMM) [13,
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Fig. 3. Experimental results for SRL. (a) Active learning curve for the complete label
querying scenario (b) Active learning curve for the partial label querying scenario

14], which is a learning algorithm for structured output with a specific set of
sequential constraints. More directly related is the active learning work using
conditional random fields (CRFs) [15], which can theoretically incorporate gen-
eral constraints, basing selection on a probabilistic uncertainty metric. In this
case, the complete labels are selected and the emphasis is on reducing the actual
cost of labeling through a more sophisticated interaction with the expert.

7 Conclusions and Future Work

This work describes a margin-based active learning approach for structured out-
put spaces. We first look at the setting of querying complete labels, defining
Qglobal to be used in situations where the scoring function f(x,y) is not decom-
posable or the data is expected to be exclusively globally learnable and define
Q

local(C)
to be used when the scoring function is decomposable and the data is

expected to be locally learnable. We further demonstrate that in cases where the
local classifications can be queried independently, the labeling effort is most dras-
tically reduced using partial label queries with the querying function Qlocal(C).
These propositions are also supported empirically on both synthetic data and
the semantic role labeling (SRL) task. There appears to be many dimensions for
future work including examining scenarios where subsets of the output variables
are queried, providing a continuum between single and complete labels. Further-
more, developing a more realistic model of labeling cost along this continuum
and looking at the performance of other margin-based learning algorithms within
this framework would likely enable this work to be applied to a wider range of
structured output applications.
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1. Carreras, X., Màrquez, L.: Introduction to the CoNLL-2004 shared tasks: Semantic
role labeling. In: Proc. of the Conference on Computational Natural Language
Learning (CoNLL). (2004)

2. Collins, M.: Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In: Proc. of the Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). (2002)

3. Punyakanok, V., Roth, D., Yih, W., Zimak, D.: Learning and inference over con-
strained output. In: Proc. of the International Joint Conference on Artificial In-
telligence (IJCAI). (2005) 1124–1129

4. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2 (2001) 45–66

5. Yan, R., Yang, J., Hauptmann, A.: Automatically labeling video data using multi-
class active learning. In: Proc. of the International Conference on Computer Vision
(ICCV). (2003) 516–523
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