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Abstract

Question Classification is commonly used in
question answering systems to perform a se-
mantic classification of the target answer in
an effort to provide additional information to
downstream processes. It is different from
the common text categorization task in the
sense that questions are relatively short and
contain less word-based information com-
pared with classification of the entire text.
This work presents a machine learning ap-
proach to this task. Our approach is to aug-
ment the questions with syntactic and se-
mantic analysis, as well as external seman-
tic knowledge, as input to the text classi-
fier. It is shown that, in the context of ques-
tion classification, augmenting the input of
the classifier with appropriate semantic cat-
egory information results in significant im-
provements to classification accuracy.

1 Introduction

Open-domain question answering (Moldovan et al.,
2002; Ravichandran and Hovy., 2002) has become an
increasingly important direction in natural language
processing. The purpose of the question answering
(QA) task is to seek an accurate and concise answer
to a free-form factual question1 contained in a large
text corpora, as opposed to a document judged rele-
vant through its similarity to the query. The difficulty
of pinpointing and verifying the precise answer makes
question answering more challenging than the com-
mon information retrieval task performed by readily
available search engines.
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1It does not address questions like ‘Do you have a light?’,
which calls for an action

Recent works (Hovy et al., 2001) have shown that
locating an accurate answer hinges on first filtering out
a wide range of candidates based on some categoriza-
tion of answer types given a question, which is also
demonstrated empirically in this paper. Specifically,
this classification task has two purposes. First, it pro-
vides constraints on the answer types that allow further
processing to precisely locate and verify the answer.
Second, it provides information that downstream pro-
cesses may use in determining answer selection strate-
gies that may be answer type specific. For example,
when considering the question:Q: What Canadian city
has the largest population?, we do not want to test ev-
ery noun phrase in a document to see whether it pro-
vides an answer. The hope is, at the very least, to clas-
sify this question as having answer typecity, implying
that only candidate answers that are cities need consid-
eration.

At a high level, question classification may be
viewed as a text categorization task (Sebastiani, 2002).
However, there exist characteristics of question classi-
fication that distinguish it from the common task. On
one hand, questions are relatively short and contain
less word-based information compared with classify-
ing the entire text. On the other hand, short questions
are amenable for more accurate and deeper-level anal-
ysis. Our approach is, therefore, to augment the ques-
tions with syntactic and semantic analysis, as well as
external semantic knowledge, as input to the text clas-
sifier. In this way, this work on question classification
can be also viewed as a case study in applying semantic
information to text classification.

Similar to syntactic information such as part-of-
speech tags, a fairly clear notion of how to use lex-
ical semantic information is to replace or augment
each word by its semantic class in the given context,
then generate a feature-based representation and learn
a mapping from this representation to the desired prop-
erty. This general scheme leaves several issues open
that make the analogy to syntactic categories nontriv-



ial. First, it is not clear which semantic categories are
appropriate and how to acquire them. Second, it is not
clear how to handle the more difficult problem of se-
mantic disambiguation when augmenting the represen-
tation of a sentence.

Therefore, there have been very few attempts to
study these problems in the context of classification.
In the context of prepositional phrase attachment,
both (Brill and Resnik, 1994) and (Krymolowski and
Roth, 1998) were able to show small improvements
by using Wordnet semantic classes to augment the raw
representation of sentences. Lin and Pantel (Pantel and
Lin, 2002) have done several works on acquiring se-
mantic classes and using the acquired information but,
in most cases, this was not done in a classification
framework. The semantic classes acquired by them
will be used in the current work.

This work systematically studies several possible se-
mantic information sources and their contribution to
classification. For the first problem, we compare four
types of semantic information sources that differ in
their granularity, method of acquisition, and size: (1)
automatically acquired named entity categories, (2)
word senses in WordNet 1.7 (Fellbaum, 1998), (3)
manually constructed word lists related to specific cat-
egories of interest, and (4) automatically generated se-
mantically similar word lists (Pantel and Lin, 2002).
For the second problem above, in all cases, we define
semantic categories of words and incorporate the infor-
mation into question classification in the same way: if
a wordw occurs in a question, the question represen-
tation is augmented with the semantic categories of the
word.

Clearly, a word may belong to different semantic
categories in different contexts. For example, the word
water has the meaningliquid or body of waterin dif-
ferent sentences. Without disambiguating the sense of
a word we cannot determine which semantic category
is more appropriate in a given context. At this point,
our solution is to extract all possible semantic cate-
gories of a word as features, without disambiguation,
and allowing the learning process to handle this prob-
lem, building on the fact that the some combinations of
categories are more common than others and more in-
dicative to a specific class label. As we show later, our
experiments support this decision, although we have
yet to experiment with the possible contribution of a
better way to determine the semantic class in a context
sensitive manner.

Our experimental study focuses on comparing the
contribution of different syntactic and semantic fea-
tures to the classification quality. In the experiments,
we observe that classification accuracies over 1,000
TREC (Voorhees, 2002) questions reach92.5% for 6
coarse classes and89.3% for 50 fine-grained classes,
and that the semantic information is critical to support

this level of accuracy. A28.7% error reduction can be
achieved when semantic features are incorporated into
fine-grained classification. This result is even better
than the SVM and kernel methods (but with fewer fea-
tures) in (Zhang and Lee, 2003; Suzuki et al., 2003),
which is a proof of the necessity of informative fea-
tures in this task.

The paper is organized as follows: Sec. 2 presents
the question classification problem, its value to the
overall question answering task, and our learning ap-
proach; Sec. 3 illuminates how the sources of semantic
information are incorporated as features and describes
all the features defined for this task. Sec. 4 presents our
experimental study and results. In Sec. 5 we conclude
by discussing a few issues left open by our study.

2 Question Classification

Many important natural language inferences can be
framed as resolving ambiguity, either syntactic or se-
mantic, based on properties of the surrounding con-
text. These are typically modeled as classification
tasks (Roth, 1998). Examples include part-of-speech
tagging where a word is mapped to its part-of-speech
tag in the context of a given sentence, context-sensitive
spelling correction where a word is mapped to a simi-
larly spelled word appropriate within the context of the
sentence, and many other problems such as word-sense
disambiguation or word choice selection in machine
translation. Similarly, we define Question Classifica-
tion (QC) here to be the multi-class classification task
that one seeks a mappingg : X → {c1, ..., cn}, that
maps an instancex ∈ X (e.g., a question) to one of n
classesc1, ..., cn, which provides a semantic constraint
on the sought-after answer.

2.1 Question Hierarchy

We define a two-layered taxonomy, which represents
a natural semantic classification for typical answers.
The hierarchy contains 6 coarse classes (ABBREVI-
ATION, ENTITY, DESCRIPTION, HUMAN, LOCA-
TION and NUMERIC VALUE) and 50 fine classes,
shown in Table 1. Each coarse class contains a non-
overlapping set of fine classes.

Coarse Class Fine Classes
ABBREV. abbreviation,expression
ENTITY animal,body,color,creative,currency,disease,

event,food,instrument,lang,letter,other,
plant,product,religion,sport,substance,
symbol,technique,term,vehicle,word

DESCRIPTION definition,description,manner,reason
HUMAN group,individual,title,description

LOCATION city,country,mountain,other,state
NUMERIC code,count,date,distance,money,order,other,

period,percentage,speed,temp,volume-
size,weight

Table 1: Question Classification Taxonomy.



2.2 QC in Question Answering - A Case Study

In this section, we provide evidence that using question
classification results for reranking the passages sup-
plied by a passage retrieval engine, which is a common
component in question answering systems, can dra-
matically improve the precision of returned passages.
The evaluation is performed on the questions in TREC
2002 (Voorhees, 2002).

The passage retrieval method we use is an adap-
tation of the Okapi BM25 document retrieval algo-
rithm (Robertson et al., 1998) with typical parameter
values (b = 0.75, k1 = 1.2, k3 = ∞) under the imple-
mentation provided by LEMUR2. We divide each doc-
ument into overlapping 3-sentence passages for index-
ing. The question itself is directly used as the query,
and 1000 passages were retrieved for each query. This
original ranking is then compared against a reranking
where any passage containing a term of the fine grained
semantic class decided by classification of this ques-
tion is ranked higher than those do not. One caveat
here is that we removed from our test set questions of
semantic classes which can not be annotated by our
named entity tagger and those without known answers.

We evaluateaverage precision of relevant pas-
sages( 1

n

∑n
i=1

i
rank of the ith relevant passage , where

n is the total number of relevant passages containing
the correct answer in the 1,000 returned.) for each
question. The relative precision increases (%) aver-
aged on questions by reranking are seen in Table 2.

Coarse Classes NUM ENTY LOC HUM TOTAL
# of Questions 147 53 101 88 389

# Increase/# Decrease. 116/0 12/0 75/3 64/1 267/4
Avg. Rel. Prec. Increase 43.7% 54.0% 71.3% 27.2% 48.5%

Table 2: Relative Precision Increase of Reranked Pas-
sages. The rows show coarse classes of questions eval-
uated, the total number of questions tested in each
coarse class, the number of questions whose retrieving
precisions are increased and decreased by reranking,
and the average relative precision increase over ques-
tions in each coarse class respectively.

An example of a question that benefits from this
method is:(NUM:money) What is the GDP of China?.
Too many passages containChinain the document col-
lection andGDP does not help much to filter out irrel-
evant passages since it is not completely trivial to unify
it with all of its equivalent representations. Therefore,
associating the question classification outcome indicat-
ing that we are looking for adollar amountdrastically
increases the precision of retrieved passages.

2.3 Learning a Question Classifier

To adapt to the layered semantic hierarchy of answer
types, we adopt a hierarchical learning classifier (Li

2The Lemur Toolkit for Language Modeling in Informa-
tion Retrieval.See http://www.cs.cmu.edu/ lemur.

and Roth, 2002) based on the sequential model of
multi-class classification, as described in (Even-Zohar
and Roth, 2001). The basic idea of this model is to
shrink the set of possible class labels (confusion set)
of a given question step by step by concatenating a se-
quence of simple classifiers. In order to allow a sim-
ple classifier to output more than one class label in
each step, the classifier’s output activation is normal-
ized into a density over the class labels and is thresh-
olded.

The question classifier is built by combining a se-
quence of two simple classifiers. The first classifies
questions into coarse classes (Coarse Classifier) and
the second into fine classes (Fine Classifier). Each of
them utilizes the Winnow algorithm within the SNoW
(Sparse Network of Winnow (Carlson et al., 1999))
learning architecture which learns a separate linear
function over the features for each class label effi-
ciently. A feature extractor automatically extracts the
same features for them based on multiple syntactic, se-
mantic analysis results and external knowledge of the
question. The second classifier depends on the first in
that its candidate labels are generated by expanding the
set of retained coarse classes from the first into a set of
fine classes; this set is then treated as the confusion
set for the second classifier. Figure 1 shows the basic

ABBR, ENTITY,DESC,HUMAN,LOC,NUM

ABBR, 
ENTITY

ENTITY,
HUMAN

DESC

Coarse Classifier

Fine Classifier

abb,exp ind, plant date

abb, animal, 
plant… food, ind, … def, reason,…

Map coarse classes 
to fine classes

C0

C1

C2

C3 animal,food

Figure 1: The hierarchical classifier

structure of the hierarchical classifier. During either
the training or the testing stage, a question is processed
along one single path top-down to get classified. The
confusion set of the question is shrank from the set of
all possible coarse classesC0 to C3 by the classifier.

For both the coarse and fine classifiers, the same de-
cision model is used to choose class labels for a ques-
tion (C0 → C1 andC2 → C3). Given a confusion set,
SNoW outputs a density over the classes derived from
the activation of each class. After ranking the classes
in the decreasing order of density values, we have the
possible class labelsC = {c1, c2, . . . , cn}, with their
densitiesP = {p1, p2, . . . , pn} (where,

∑n
i=1 pi = 1,

0 ≤ pi ≤ 1, 1 ≤ i ≤ n). For each question we output



the firstk classes (1 ≤ k ≤ 5), c1, c2, . . . ck wherek
satisfies,

k = min(argmint(

t∑
i=1

pi ≥ T ), 5),

T is a threshold value in [0,1] (T = 0.95 is chosen
in the experiments.). For evaluation purpose, only one
coarse class inC1 and one fine class inC3 with the
highest rank are counted as the final output of the clas-
sifier.

3 Features in Question Classification

Machine Learning based classifiers typically take as
input a feature-based representation of the domain el-
ement (e.g., a question). For the current task, a ques-
tion sentence is represented as a vector of features and
treated as a training or test example for learning. The
mapping from a question to a class label is a linear
function defined over this feature vector.

In this work, several primitive feature types are de-
rived from multiple sources of syntactic and lexical se-
mantic analysis of questions, each of which in itself
could be a learning process, described later in this sec-
tion. Over those primitive feature types, a set of opera-
tors are used to compose more complex features, such
as conjunctive (n-grams) and relational features. Only
‘active’ features are listed in our representation so that
despite the large number of potential features — about
500,000 in the whole feature space, the size of each
example is small — hundreds of active features.

3.1 Syntactic Features

In addition to the information that is readily available
in the input instance, it is common in natural language
processing tasks to augment sentence representation
with syntactic categories, under the assumption that the
sought-after property, for which we seek the classifier,
depends on the syntactic role of a word in the sentence
rather than the specific word (Roth, 1998).

Our baseline classifier makes use of the standard
POS information and phrase information extracted by
a shallow parser. Specifically, we usechunks(non-
overlapping phrases) andhead chunks, extracted using
a publicly available chunker described in (Punyakanok
and Roth, 2001). The following example illustrates
the information available when generating the syntax-
augmented feature-based representation.
Question: Who was the first woman killed in the Vietnam
War?
Chunking: [NP Who] [VP was] [NP the first woman] [VP
killed] [PP in] [NP the Vietnam War] ?

The head chunks denote the first noun or verb chunk
after the question word in a question. For example,
in the above question, the first noun chunk after the
question wordWho is ‘the first woman’. The features
are represented as abstract tags in each example.

3.2 Semantic Features

Similar logic can be applied to semantic categories.
In many cases, the property seems not depend on the
specific word used in the sentence – that could be re-
placed without affecting this property – but rather on
its ‘meaning’. For example, given the question:What
Cuban dictator did Fidel Castro force out of power
in 1958?, we would like to determine that its answer
should be a name of a person. Knowing thatdictator
refers to a person is essential to correct classification.

This work systematically studies four semantic in-
formation sources and their contribution to classifi-
cation: (1) automatically acquired named entity cat-
egories -NE, (2) word senses in WordNet 1.7 (Fell-
baum, 1998) -SemWN, (3) manually constructed word
lists related to specific categories of interest -SemCSR,
and (4) automatically generated semantically similar
word lists (Pantel and Lin, 2002) -SemSWL.

For the four external semantic information sources,
we define semantic categories of words and incorpo-
rate the information into question classification in the
same way: if a wordw occurs in a question, the ques-
tion representation is augmented with the semantic cat-
egory(ies), of the word. For example, in the question:
What is the state flower of California?given thatplant
(for example) is the only semantic class of flower, the
feature extractor addsplant, an abstract label to the
question representation.

Named Entities

A named entity (NE) recognizer assigns a seman-
tic category to some of the noun phrases in the ques-
tion. The scope of the categories used here is broader
than the common named entity recognizer. With ad-
ditional categories that could help question answering,
such asprofession, event, holiday, plant, sport, medi-
cal etc., we redefine our task in the direction of seman-
tic categorization. The named entity recognizer was
built on the shallow parser described in (Punyakanok
and Roth, 2001), and was trained to categorize noun
phrases into one of 34 different semantic categories
of varying specificity. Its overall accuracy (Fβ=1) is
above 90%.For the questionWho was the woman killed in
the Vietnam War ?, the named entity tagger will return:NE:
Who was the [Num first] woman killed in the [Event Viet-
nam War] ? As described above, the identified named
entities are added to the question representation.

WordNet Senses

In WordNet (Fellbaum, 1998), words are organized
according to their ‘senses’ (meanings). Words of the
same sense can, in principle, be exchanged in some
contexts. The senses are organized in a hierarchy of
hypernyms and hyponyms. Word senses provide an-
other effective way to describe the semantic category



of a word. For example, in WordNet 1.7, the wordwa-
ter belongs to 5 senses. The first two senses are:

Sense 1:binary compound that occurs at room temper-
ature as a colorless odorless liquid;

Sense 2:body of water.
Sense 1 contains words{H2O, water} while Sense 2 con-

tains{water, body of water}. Sense 1 has a hypernym (Sense
3: binary compound); and one hyponym of Sense 2 is (Sense
4: tap water).

For each word in a question, all of its sense IDs
and direct hypernym and hyponym IDs are extracted as
features. This approach possibly introduces significant
noise to classification since only a small proportion of
senses are really related.

Class-Specific Related Words
Each question class frequently occurs together with

a set of words which can be viewed as semantically
related to this class. We analyzed about5, 000 ques-
tions and constructed manually a list of related words
for each question class. Those lists are different from
ordinary named entity lists in a way that they cross the
boundary of the same syntactic role. Below are some
examples of the word lists.

Question Class: Food
{alcoholic apple beer berry breakfast brew butter candy

cereal champagne cook delicious eat fat feed fish flavor food
fruit intake juice pickle pizza potato sweet taste ...}

Question Class: Mountain
{hill ledge mesa mountain peak point range ridge slope

tallest volcanic volcano...}
The question class can be viewed as a ‘topic’ tag

for words in the list, a type of semantic categories.
It’s a semantic information source similar to the key-
word information used in some earlier work (Herm-
jakob, 2001). The difference is that they are converted
into features here and combined with other types of
features to generate an automatically learned classifier.

Distributional Similarity Based Categories
Distribution similarity (Lee, 1999) of words cap-

tures the likelihood of them occurring in the same syn-
tactic structures in text. Depending on the type of de-
pendencies used to determine the distributional simi-
larity, it can be argued that words with high distribu-
tion similarity have similar meanings. For example,
the words used in the following syntactic structures are
likely to be U.S. states.

... appellate court campaign in ...

... capital governor of ...

... driver’s license illegal in ...

... ’s sales tax senator for ...

Pantel and Lin (Pantel and Lin, 2002) proposed
a method to cluster words into semantically similar
groups based on their distributional similarity with re-
spect to dependencies in a large collection of text.
They built similar word lists for over20, 000 English

words. All the words (generally hundreds) in a list cor-
responding to a target word are organized into different
senses. For example, the wordwaterhas the following
similar words:

Sense 1:{oil gas fuel food milk liquid ...}
Sense 2:{air moisture soil heat area rain snow ice ...}
Sense 3:{waste sewage pollution runoff pollutant...}

One way of applying these lists in question classifi-
cation is to treat the target word of a list as the semantic
category of all the words in the list and in line with our
general method, and add this semantic category of the
word as a feature.

Comparison of Semantic Sources

In an effort to compare the semantic information
sources, Table 3 presents the average number of se-
mantic features extracted for each test question from
each source. This indicates the increase in informa-
tion, which significantly differs among them. Named
entities provide the least semantic information while
Pantel’s categories provide the most as each of the cat-
egory reflects the semantical similarity among a much
broader range of words.

Feature Type avg. # of features
NE 0.23

SemWN 16
SemCSR 23
SemSWL 557

Table 3: The average number of semantic features
extracted for each test question based on different
types of semantic features. For example, there are 16
SemWN features extracted for each question on aver-
age.

Among the four sources, named entity recognition is
the only context sensitive semantic analysis of words.
The other three sources are likely to add some degree
of noise to the representation of a question due to lack
of sense disambiguation. Furthermore, SemCSR is the
only partially task-specific semantic analysis and all
other sources can be applied in general classification
tasks.

4 Experimental Study

Our experimental study focuses on (1) testing the per-
formance of the learned classifier in classifying factual
questions into coarse and fine classes, and (2) compar-
ing the contribution of different syntactic and semantic
features to the classification quality.

Based on the same framework of the hierarchical
classifier described before, we construct different clas-
sifiers utilizing different feature sets and compare them
in experiments. The first group of classifiers compared
take as input an incremental combination of syntactic
features (words, POS tags, chunks and head chunks).



In particular, the classifier takes as input all the syn-
tactic features is denoted as SYN. Then, another group
of classifiers are constructed by adding different com-
binations of semantic features to the input of the SYN
classifier.

Three experiments are conducted for the above pur-
poses. The first evaluates the accuracies of the hier-
archical classifier for both coarse and fine classes us-
ing only syntactic features. The second evaluates the
contribution of different semantic features (all 15 pos-
sible combinations of semantic feature types are added
to the SYN classifier and compared this way.). In the
third experiment we hope to find out the relation be-
tween the contribution of semantic features and the
size of the training set by training the classifier with
training sets of different sizes.

The 1000 questions taken from TREC 10 and 11
serve as an ideal test set for classifying factual ques-
tions. 21,500 training questions are collected from
three sources: 894 TREC 8 and 9 questions, about
500 manually constructed questions for a few rare
classes, and questions from the collection published
by USC (Hovy et al., 2001). In the first two experi-
ments, the classifiers are trained on all these questions.
10 other training sets with incremental sizes of 2,000,
4,000, ..., 20,000 questions built by randomly choos-
ing from these questions are used in the third experi-
ment. All the above questions were manually labelled
according to our question hierarchy, with one label per
question according to the majority of our annotators3.

Performance is evaluated by the global accuracy
of the classifiers for all the coarse or fine classes
(Accuracy), and the accuracy of the classifiers for a
specific class c (Precision[c]), defined as follows:

Accuracy =
# of correct predictions

# of predictions

precison[c] =
# of correct predictions of class c

# of predictions of class c

Note that since all questions are being classified, the
global accuracy is identical to both precision and recall
that are commonly used in similar experiments. More-
over, for specific classes, precision and recall are de-
pendent although different — high precision on all spe-
cific classes implies high recall, so, only precision[c]
is shown in Figure 5. Note that only one coarse class
and one fine class with the highest rank in their density
value are counted as correct in evaluation.

4.1 Experimental Results

All the classifiers are trained on the 21,500 training
questions and tested on the 1,000 TREC 10 and 11
questions in the experiments except the case of study-
ing the influence of training sizes.

3Available at http://l2r.cs.uiuc.edu/∼cogcomp/data/QA/.

Classification Using Only Syntactic Features

Table 4 shows the classification accuracy of the hier-
archical classifier with different sets of syntactic fea-
tures in the first experiment.Word , POS, Chunk
and Head(SYN) represent different feature sets con-
structed from an incremental combination of syntac-
tic features. For example, the feature setChunk actu-
ally contains all the features in Word, POS, and adds
chunks.Head(SYN)contains all the four types of syn-
tactic features. Overall, we get a 92.50% accuracy for
coarse classes and 85.00% for the fine classes using
all the syntactic features. The reason why the classi-
fier has a much lower performance in classifying fine
classes compared with coarse classes is because there
are far more fine classes and because they have less
clear boundaries. Although it is not shown that chunks
contribute to the classification quality in this experi-
ment, in some other experiments, chunks are shown to
contribute when combined with other types of features.
The fact that head chunk information contributes more
than generic chunks indicates that the syntactic role of
a chunk is a factor that can not be ignored in this task.

Classifier Word POS Chunk Head(SYN)
Coarse 85.10 91.80 91.80 92.50
Fine 82.60 84.90 84.00 85.00

Table 4: Classification Accuracy of the hierarchical
classifier for coarse and fine classes using an incremen-
tal combination of syntactic features.

Contribution of Semantic Features

Although minor improvements occur in classifying
questions into coarse classes after semantic features
are also used in the second experiment, significant im-
provements are achieved for distinguishing between
fine classes. Figure 2 presents the accuracy of the clas-
sifier for fine classes after semantic features are input
together with the SYN feature set.

The best accuracy for classifying fine classes in this
experiment is 89.3%, using a combination of feature
types {SYN, NE, SemCSR, SemSWL}. This is a
28.7% error reduction (from 15% to 10.7%) over the
SYN classifier. For simplicity, this feature set{SYN,
NE, SemCSR, SemSWL} is denoted as ‘SEM’ in the
later experiments. The results reflect that lexical se-
mantic information has significant contribution to fine-
grained classification, even without word sense disam-
biguation. In this experiment we also noticed that the
class-specific word lists (SemCSR), and similar word
lists (SemSWL) are the most independent beneficial
sources of semantic information because the coverage
and the usage of them. All the relevant semantic cate-
gories (synonyms in some sense) are output as features
for a word, so a broader range of words will output the
same feature which enforce its influence in learning.



An interesting phenomenon is that named entity and
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Figure 2: Classification Accuracy for fine classes after
adding different combinations of semantic features to
the input of the SYN classifier. The X-axis is just a ran-
dom arrangement of feature sets without a unit. Shapes
in the graph represent the four types of semantic fea-
ture {NE, SemWN, SemCSR, SemSWL} defined in
Sec. 3.2 and a juxtaposition of symbols represents the
use of a combination of different types(in addition to
SYN). For example,5© denotes that the classifier
takes as input a combination of feature types{SYN,
SemCSR, SemSWL}.

WordNet features degrades the classification accuracy
to below baseline when used independently. The possi-
ble reasons behind this are: named entities have a very
small coverage over the words (0.23 active features per
question); and WordNet adds more noise compared
with other semantic sources4. However, when com-
bined with other sources they do achieve an improve-
ment in accuracy.

Classification Performance vs. Training Size

The relation between classification accuracy of the
SYN classifier and the SEM classifier, and training
size, is tested in the third experiment and results are
given in Figure 3. The error reduction from the SYN
classifier to the SEM classifier on the 1,000 TREC
questions is stable over 20% over all training sizes,
also proving the distinctive contribution of semantic
features.

4.2 Further Analysis

Some other interesting phenomena have also been ob-
served in our experiments. The classification accuracy
of the SEM classifier for individual fine classes is given
by Table 5. The results indicate that accuracies for

4Only one or two sense features for each word is correct
when using WordNet. SemSWL may have a lower ambigu-
ity.
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Figure 3: Classification Accuracy versus training size.
‘SYN’ and ‘SEM’ represent the learning curves of
the SYN classifier and the SEM classifier respectively.
‘Err. Reduction’ denotes the error reduction from the
SYN classifier to the SEM classifier. The training size
is 2000×X and the test set is 1,000 TREC questions.

them are far from uniform, reflecting different difficul-
ties in identifying them. Questions belonging toDesc
(description) andEntity:other (uncommon entities)
are the most difficult, since their boundaries with other
classes are ill-defined.

Class # Precision[c] Class # Precision[c]
abb 2 100% desc 25 36%
exp 17 94.11% manner 8 87.5%

animal 27 85.18% reason 7 85.71%
body 4 100% gr 19 89.47%
color 12 100% ind 154 90.25%

creative 13 76.92% title 4 100%
currency 6 100% desc 3 100%
disease 4 50% city 41 97.56%
event 4 75% country 21 95.23%
food 6 100% mount 2 100%
instru 1 100% LOC:other 116 89.65%
lang 3 100% state 14 78.57%

ENTY:other 24 37.5% count 24 91.66%
plant 3 100% date 145 100%

product 6 66.66% dist 37 97.29%
religion 1 100% money 6 100%
sport 4 75% NUM:other 15 93.33%

substance 21 80.95% period 20 85%
symbol 2 100% perc 9 77.77%
termeq 22 63.63% speed 8 100%

veh 7 71.42% temp 4 100%
def 125 97.6% weight 4 100%

TOTAL 1000 89.3%

Table 5: Classification Accuracy for specific fine
classes with the feature set SEM. # denotes the number
of predictions made for each class and Precision[c] de-
notes the classification accuracy for a specific class c.
The classes not shown do not actually occur in the test
collection.

To better understand the classification results, we
also split the 1,000 test questions into different groups
according to their question words, that is,What, Which,
Who, When, Where, How andWhyquestions. A base-
line classifier,Wh-Classifier, is constructed by clas-
sifying each group of questions into its most typ-
ical fine class. Table 6 shows recall (defined as



# of correct predicted questions
# of test questions ) of the Wh-Classifier

and the SEM classifier on different groups of ques-
tions. The typical fine classes in each group and
the number of questions in each class are also given.
The distribution ofWhatquestions over the semantic
classes is quite diverse, and therefore more difficult to
classify than other groups. From this table, we have
also noticed that classifying questions simply based on
question words (1) does not corresponds well to the
desired taxonomy, and (2) is too crude since a large
fraction of the questions are ‘What’ questions.

Question Word # Wh SEM Classes(#)
What 598 21.07% 85.79% ind.(36), def.(126), loc–other(47)
Which 21 33.33% 95.24% ind.(7), country(5)
Who 99 93.94% 96.97% group(3), ind.(93), human desc.(3)
When 96 100% 100% date(96)
Where 66 90.01% 92.42% city(1), mount.(2), loc–other(61)
How 86 30.23% 96.51% count(21), dist.(26), period(11)
Why 4 100% 100% reason(4)
Total 1000 41.3% 89.3%

Table 6: Classification Accuracy of the Wh-Classifier
and the SEM classifier on different question groups.
Typical fine classes in each group and the number of
questions in each class are also shown byClasses(#).

The overall accuracy of our learned classifier is sat-
isfactory. Nevertheless, it is constructive to consider
some cases in which the classifier fails. Below are
some examples misclassified by the SEM classifier.
• What imaginary line is halfway between the North and

South Poles ?The correct label islocation, but the classifier
outputs an arbitrary class. Our classifier fails to determine
that ‘line’ might be a location even with the semantic infor-
mation, probably because some of the semantic analysis is
not context sensitive.
• What is the speed hummingbirds fly ?The correct la-

bel is speed, but the classifier outputsanimal. Our feature
extractor fails to determine that the focus of the question is
‘speed’. This example illustrates the necessity of identifying
the question focus by analyzing syntactic structures.
• What do you call a professional map drawer ?The

classifier returnsother entities instead ofequivalent term.
In this case, both classes are acceptable. The ambiguity
causes the classifier not to outputequivalent term as the first
choice.

5 Conclusion and Future Directions

This paper presents a machine learning approach to
question classification. We developed a hierarchical
classifier that is guided by a layered semantic hierarchy
of answers types, and used it to classify questions into
fine-grained classes. Our experimental results exhibit
benefits of the enhanced feature representation from
lexical semantic analysis. While the contribution of
syntactic information sources to the process of learn-
ing classifier has been well studied, we hope that this
work can inspire the systematic studies of the contri-
bution of sematic information to classification.

One future step along this line of work would be
to improve the selection of the semantic classes using

context sensitive methods for most of the semantic in-
formation sources and to enlarge the coverage of the
named entity recognizer. Furthermore, we hope to ex-
tend this work to support interactive question answer-
ing. In this task, the question answering could be able
to interact with users which may require even larger
coverage of semantic classes and more robustness.
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