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Abstract

Consider the setting where a panel of judges is re-
peatedly asked to (partially) rank sets of objects
according to given criteria, and assume that the
judges’ expertise depends on the objects’ domain.
Learning to aggregate their rankings with the goal
of producing a better joint ranking is a fundamen-
tal problem in many areas of Information Retrieval
and Natural Language Processing, amongst others.
However, supervised ranking data is generally dif-
ficult to obtain, especially if coming from multiple
domains. Therefore, we propose a framework for
learning to aggregate votes of constituent rankers
with domain specific expertise without supervision.
We apply the learning framework to the settings
of aggregating full rankings and aggregating top-k
lists, demonstrating significant improvements over
a domain-agnostic baseline in both cases.

1 Introduction
Consider the setting where judges are repeatedly asked to
(partially) rank sets of objects, and assume that each judge
tries to reproduce some true underlying ranking to the best
of their ability. Rank aggregation aims to combine the rank-
ings of such experts to produce a better joint ranking. Now,
imagine that the judges’ ability to generate rankings depends
on the type of objects being ranked or the criteria they are
asked to use while ranking. As a simple example, consider
a group of people who are asked to rank a set of confer-
ence submissions written in English and another set written in
French according to their relevance to the conference theme.
One would expect that a bilingual expert in the field would
produce reasonable rankings of both cases, while a judge
who only speaks French and is unfamiliar with the confer-
ence topic may produce mediocre rankings (possibly, only
using a set of keywords) for the French submissions and ran-
dom rankings for the English set. We consider the problem
of learning to aggregate these rankings by constituent judges
with domain-specific expertise into a joint ranking.

The problem of aggregating rankings is ubiquitous in In-
formation Retrieval (IR) and Natural Language Processing
(NLP). In IR, for instance, meta-search aims to combine the

outputs of multiple search engines to produce a better rank-
ing. In machine translation (MT), aggregation of multiple
systems built on different underlying principles has received
considerable recent attention (e.g. [Rosti et al., 2007]). In
many such applications, one would expect the expertise of
the constituent components to depend on the input domain.
In IR, the quality of rankings produced by search engines
has been shown to be query type dependent (e.g. [Geng et
al., 2008]): some may specialize on ranking product reviews
while others on ranking scientific documents. In MT system
aggregation, component systems may be trained on different
corpora (e.g. multi-lingual Hansards, or technical manuals),
and tend to be fragile when tested on data sampled from a dif-
ferent domain [Koehn and Schroeder, 2007]. Thus, the rela-
tive expertise of these systems depends on which distribution
the test source language data is sampled from. Moreover, in
these and many other aggregation examples, the input domain
information in regards to the expertise of each judge is latent.

Supervised learning approaches to solving rank aggrega-
tion (e.g. [Liu et al., 2007]) are impractical for many ap-
plications as labeled ranking data is generally very expen-
sive to obtain. In IR, for example, heuristics or indirect
methods are often employed (e.g. [Shaw and Fox, 1994;
Dwork et al., 2001; Joachims, 2002]) to produce a surrogate
for true preference information. Needless to say, supervision
for typed ranked data is even harder to obtain.

The principal contribution of this paper is a framework
for learning to aggregate votes of constituent rankers with
domain-specific expertise without supervision. Given only
a set of constituent rankings, we learn an aggregation func-
tion that attempts to recreate the true ranking without labeled
data. The intuition behind our approach is simple: rankers
which are experts in a given domain are better at generating
votes close to true rankings for that domain and thus will tend
to agree with each other, whereas the non-experts will not.
Given rankers’ votes for a set of queries, we aim to discover
patterns of rankers’ agreement. Each distinct pattern corre-
sponds to a specific (latent) domain, enabling us to deduce
domain-specific expertise of each judge. The ability to iden-
tify expertise of a ranker for a specific query can potentially
greatly improve accuracy of the model over simpler aggre-
gation techniques. While our framework does not commit to
any particular type of (partial) rankings, we show how to ap-
ply it to two kinds of rankings: permutations and top-k lists.



The remainder of the paper is organized as follows. Sec-
tion 2 introduces relevant notation and reviews distance-
based ranking models. Section 3 introduces our model for
aggregating over rankers with domain-specific expertise and
Section 4 derives an EM-based algorithm for learning model
parameters, and describes methods to make the learning effi-
cient. Section 5 applies the learning framework to two types
of rankings: permutations (full rankings) and top-k lists. Fi-
nally, Section 6 discusses relevant work, and Section 7 con-
cludes the work and gives ideas for future directions.

2 Distance-Based Models
While there has been a significant research effort in the statis-
tics community with regards to analyzing and modeling rank-
ing data (e.g. [Marden, 1995]), we are specifically inter-
ested in distance-based models beginning with the Mallows
model [Mallows, 1957].

2.1 Notation and Definitions
Let us first introduce the notation we will use throughout the
paper. The models presented in this work do not commit to a
particular type of (partial) ranking. Therefore, we will gener-
ally use the same notation for all (partial) ranking types, and
the particular type we imply should be clear from context.
However, since we apply the model to two particular types of
rankings, permutations (full rankings) and top-k lists, let us
start with the relevant definitions.

Permutations
Let {x1, x2, . . . , xn} be a set of objects to be ranked by
a judge. A permutation π is a bijection from the set
{1, 2, . . . , n} onto itself; we will denote by π(i) the rank as-
signed to object xi, and by π−1(j) the index of the object
assigned to rank j. Let us also define e to be the identity per-
mutation (1, . . . , n). Finally, let us denote Sn to be the set of
all n! permutations over n objects.

Let us define a distance between two permutations d :
Sn × Sn → R and assume that, in addition to satisfying
the usual metric properties, it is also right-invariant [Diaco-
nis and Graham, 1977]. That is, we assume that the value
of d(·, ·) does not depend on how the objects are indexed,
a property natural to the applications we consider in this
work. More specifically, if the objects are re-indexed by τ ,
the distance between two permutation over the objects does
not change: d(π, σ) = d(πτ, στ) ∀π, σ, τ ∈ Sn, where
πτ is defined by πτ(i) = π(τ(i)). Note that d(π, σ) =
d(ππ−1, σπ−1) = d(e, σπ−1). That is, the value of d does
not change if we re-index the objects such that one of the per-
mutations becomes e = (1, . . . , n) and the other ν = σπ−1.
Borrowing the notation from [Fligner and Verducci, 1986]
we abbreviate d(e, ν) as D(ν). In the remainder of the pa-
per, when we define ν as a random variable, we may treat
D(ν) = D as a random variable as well: whether it is a dis-
tance function or a r.v. will be clear from the context.

Examples of common right-invariant distance functions
over permutations include Kendall’s tau distance1:

1I(x) = 1 if x > 0, and 0 otherwise.

dK(π, σ) =
n−1∑
i=1

∑
j>i

I(πσ−1(i)− πσ−1(j)) (1)

which can be also defined as the minimum number of adja-
cent transpositions required to turn π into σ, and the Spear-
man’s footrule:

dS(π, σ) =
n∑
i=1

|π(i)− σ(i)| (2)

Top-k Lists
Top-k lists indicate preferences over different (possibly, over-
lapping) subsets of k ≤ n objects, where the elements not in
the list are implicitly ranked below all of the list elements.
They are used extensively in the IR community to represent
the output of a retrieval system; a top-10 list, for instance,
may represent the first page of a search engine output.

A number of distance measures over top-k lists have been
proposed and studied (e.g. [Fagin et al., 2003]). Of particu-
lar relevance to us will be the generalization of the Kendall’s
tau distance (1) to top-k lists proposed in [Klementiev et al.,
2008] which they defined as follows. First two top-k lists π
and σ are augmented: items in σ which are not present in π
are placed in the same position (k + 1) in π, and vice versa.
The augmented Kendall’s tau distance dA(π, σ) is then de-
fined as the minimum number of adjacent transpositions to
turn the augmented π into the augmented σ. They show that
the distance is right-invariant.

2.2 Mallows Models
Distance-based models for ranking data were first introduced
in [Mallows, 1957], and generate judge’s rankings according
to:

p(π|θ, σ) =
1

Z(θ, σ)
exp(θ d(π, σ)) (3)

where θ ∈ R, θ ≤ 0 is the the dispersion parameter, the modal
ranking σ ∈ Sn is the location parameter, and Z(θ, σ) =∑
π∈Sn

exp(θ d(π, σ)) is a normalizing constant. The proba-
bility of ranking π decreases exponentially with distance from
the mode σ. The distribution is uniform when θ = 0, and be-
comes sharper as θ grows more negative.

Let us note two properties of (3), which will be relevant
later in the paper. Firstly, under the right invariance prop-
erty of d(·, ·), the normalizing constant does not depend on σ,
Z(θ, σ) = Z(θ) (see, e.g. [Lebanon and Lafferty, 2002]).

Secondly, [Fligner and Verducci, 1986] note that if the dis-
tance function can be expressed as D(π) =

∑m
i=1 Vi(π),

where random variables Vi(π) are independent (with π uni-
formly distributed), then the MLE of θ under (3), which is
the solution to equation Eθ(D) = D, may be efficient to
compute. [Klementiev et al., 2008] refer to such distance
functions as decomposable.

[Mallows, 1957] first investigated the model with Kendall’s
and Spearman’s metrics on fully ranked data, and the model
was later generalized to other distance functions and for use
with partially ranked data [Critchlow, 1985].



2.3 Extended Mallows Models
Since the Mallows model was introduced, various extensions
have been proposed in statistics and machine learning litera-
ture (e.g. [Fligner and Verducci, 1986; Murphy and Martin,
2003; Busse et al., 2007]). Of particular interest to us is the
multiple input rankings scenario proposed by [Lebanon and
Lafferty, 2002] in the context of supervised learning.

Assuming that a vector of votes σ = (σ1, . . . , σK) fromK
individual judges is available, the generalized model assigns
a probability to ranking π according to:

p(π|θ,σ) =
1

Z(θ,σ)
p(π) exp

(
K∑
i=1

θi d(π, σi)

)
(4)

where σ ∈ SKn , θ = (θ1, . . . , θK) ∈ RK , θ ≤
0, p(π) is a prior, and normalizing constant Z(θ,σ) =∑
π∈Sn

p(π) exp(
∑K
i=1 θi d(π, σi)). The free parameters θi

represent the degree of expertise of the individual judges: the
closer the value of θi to zero, the less the vote of the i-th judge
affects the assignment of probability.

Under the right-invariance property assumption on d(·, ·),
the model has the following associated generative story:

p(π,σ|θ) = p(π)
K∏
i=1

p(σi|θi, π) (5)

That is, π is first drawn from prior p(π), and the votes of
the K individual judges are produced by drawing indepen-
dently from K Mallows models p(σi|θi, π) with the same lo-
cation parameter π.

[Klementiev et al., 2008] propose an Expectation-
Maximization (EM) [Dempster et al., 1977] based algorithm
for learning the parameters of the extended Mallows model
from Q vectors of votes {σ(j)}Qj=1. Their intuition is that
better rankers tend to exhibit agreement more than poor ones
(assumed not to collude), which was supported empirically.

In the meta-search setting, for example, the observed data
is comprised of the rankings σ(j) produced by K search en-
gines for each of the Q queries, and the goal is to infer the
joint ranking π.

3 Distance-Based Models with Domain
Expertise

Up to this point, we have only considered type agnostic mod-
els. These models assume that the expertise of the constituent
rankers do not depend on the input data domain (e.g. types
of queries in the meta-search setting, or the distributions of
the test sentences in the MT aggregation setting), or equiv-
alently, that all input comes from the same domain. In the
following discussion we will correspondingly refer to input
data domains as types.

As we have argued, in practical applications, it is more nat-
ural to model the data generation process such that domain-
specific expertise of the rankers is accounted for explicitly.
We now proceed to the task we set out to investigate: the case
of aggregating votes of rankers with domain-specific exper-
tise. We propose a mixture of the extended distance-based
models (4) as a means to formalize and model this setting.

3.1 Mixture Model
We begin by augmenting the generative story (5) to include
the notion of types. First, a type t is selected from T
types with probability αt. Then, the location parameter (true
ranking) π is drawn uniformly, and the votes of individual
experts are drawn independently from K Mallows models
p(σi|θt,i, π) with the same location parameter π. That is,

p(π,σ, t|θ,α) ∝ αt
K∏
i=1

p(σi|π, θt,i) (6)

The right-invariance property of the distance function can
be used to derive the corresponding conditional model:

p(π, t|σ,θ,α) = αt
exp

(∑K
i=1 θt,i d(π, σi)

)
Z(θ,σ)

(7)

where σ = (σ1, . . . , σK) ∈ SKn , θ ∈ RT×K ,
θ ≤ 0, and normalizing constant Z(θ,σ) =∑T
t=1

∑
π∈Sn

αt exp(
∑K
i=1 θt,i d(π, σi)).

The free model parameters are a T × K matrix θ, where
θt,i represent the degree of expertise of the judge i for type
t, and T mixture weights α. Note that this model is more
expressive than the type agnostic model which has a single
free parameter θi to model the expertise of each judge.

4 Learning and Inference
We now derive an EM-based algorithm for learning the free
model parameters α and θ, and propose methods to make
both learning and inference efficient.

4.1 Learning
Let us denote the estimates of parameters in the previous EM
iteration with α′ and θ′. In our setting, the examples we ob-
serve are vectors of rankings {σ(j)}Qj=1, where σ(j)

i is the
ranking produced by i-th ranker for example j. The unob-
served data are the corresponding true rankings with the as-
sociated types: {(t(j), π(j))}Qj=1.

In order to make the learning process more stable we use
a symmetric Dirichlet prior Dir(β) on the topic distribution
α. Now, following the generative story in Section 3.1 and
taking into account the prior defined on α, we derive the M
step (proofs are omitted due to space restrictions):

Proposition 1 The expected value of the complete data log-
likelihood under (7) is maximized by α and θ such that:

αt = (8)

1
Tβ +Q

β +
Q∑
j=1

∑
π(j)∈Sn

p(π(j), t|σ(j),θ′,α′)


Eθt,i(D) = (9)

1
αtQ

Q∑
j=1

∑
π(j)∈Sn

d(π(j), σ
(j)
i )p(π(j), t|σ(j),θ′,α′)



Thus, on each iteration of EM, (8) is used to update α (T
updates) and (9) are used to update θ parameters (T × K
updates).

Evaluating (8), estimating the right-hand side of (9), and
then solving the left hand side for θt,i directly are all com-
putationally intractable. However, learning can be made effi-
cient when particular properties of the distance function dis-
cussed in Section 4.1 are satisfied.

The ideas presented so far can be applied to any kind of
(partial) rankings. However, in order to propose efficient al-
ternatives to direct estimation of α and θ, we need to commit
to specific ranking types. Let us consider the cases of combin-
ing permutations and combining top-k lists as two examples,
and address the three problems individually.

Estimating the right-hand side of (9)
In order to estimate the right-hand side of (9) we need to ob-
tain samples from the model (7). For high dimensional mul-
timodal distributions such as (7), standard sampling meth-
ods (e.g. Metropolis-Hastings [Hastings, 1970]) do not con-
verge in a reasonable amount of time. Annealing methods
[Neal, 1996] are still computationally expensive, and addi-
tionally require careful tuning of free parameters (i.e. anneal-
ing schedule). Therefore, we use the fast approximate sam-
pling algorithm described below.

We start by obtaining a sample from each mixture com-
ponent t. This is done using the Metropolis-Hastings al-
gorithm applied to the extended Mallows model (4). The
chain is constructed as follows: denoting the most re-
cent value sampled as τ(t), two indices i, j ∈ {1, . . . , n}
are chosen at random and the objects τ−1

(t) (i) and τ−1
(t) (j)

are transposed forming a new permutation τ̃(t). If a =
p(τ̃(t), t|σ,θ′,α′)/p(τ(t), t|σ,θ′,α′) ≥ 1 the chain moves
to τ̃(t). If a < 1, the chain moves to τ̃(t) with probability a;
otherwise, it stays at τ(t).

Once the sampling is complete for each chain, we
sample permutations from the obtained set of per-
topic permutations (τ(1), τ(2), . . . , τ(T )) with probability ∝
α′t exp

(∑K
i=1 θ

′
t,i d(τ(t), σi)

)
. The underlying assumption

for this approximate sampling algorithm is that the probabil-
ity mass of a mixture component is proportional to the prob-
ability of a sample generated from this component. The sam-
pling procedure is repeated for all Q examples, and the aver-
age per-type distance is used as the estimate of the right-hand
side of (9).

This procedure is easily extended to top-k lists: when
forming the next chain element τ̃(t), we may either transpose
two elements of τ(t), or replace one of its elements with an
element not in τ(t) (i.e. from the pool of all elements in the
constituent rankings of the given example).

While convergence results have been presented in statistics
literature (e.g. [Diaconis and Saloff-Coste, 1998]) for some
distances when sampling from (3), no results are known for
the extended models (4) and (7) we have considered in this
work. However, we found experimentally that chains con-
verge rapidly for the two settings we are considering. More-
over, as the chain proceeds, we only need to compute the in-
cremental change in distance due to a single swap at each

step, which results in substantial computational savings.

Estimating α

Following (8), we estimate the type mixture coefficients α as
the proportions of the types in all of the Q sampled rankings
(with the additional pseudocounts β).

Solving the left-hand side of (9) for θ

As we noted in Section 2.2, solvingEθ(D) = D under (3) for
θ may be efficient for decomposable distance functions. In-
deed, for (decomposable) Kendall’s tau distance over permu-
tations, Eθ(DK) is efficient to compute and is monotone de-
creasing, so line search for θ converges quickly [Fligner and
Verducci, 1986]. An analogous result was derived by [Kle-
mentiev et al., 2008] for the augmented Kendall’s tau over
top-k lists (Section 2.1). Thus, requiring distance functions to
satisfy the decomposability property may enable us to solve
the left-hand side of (9) efficiently.

4.2 Inference
We use the sampling procedure described in Section 4.1 dur-
ing inference to estimate the most likely permutation for a
given set of votes.

5 Evaluation
In the absence of available labeled ranked data exhibiting do-
main variability, we construct our own data sets representa-
tive of a realistic application scenario. We evaluate the pro-
posed framework on two types of rankings we have consid-
ered so far: permutations and top-k lists.

5.1 Aggregating Typed Permutations
We first consider the case of rank aggregation for typed per-
mutations using Kendall’s tau as the distance function in (7).

For this first set of experiments, we considered K = 10
judges, producing rankings over n = 30 objects for Q = 100
examples. Each example was associated with one of T = 5
types, according to α∗ = (0.4, 0.2, 0.2, 0.1, 0.1). Roughly
half of the judges are chosen to be experts (i.e. produce good
rankings) for each of the T types.

More precisely, the votes of individual judges were pro-
duced by sampling models (3), with the same location param-
eter σ∗ = e (an identity permutation over n = 30 objects).
We chose their concentration parameters as follows: we first
flip a coin to decide whether or not the i-th ranker is an expert
for type t. If the ranker is an expert, its parameter θ∗t,i is ran-
domly chosen from a small interval close to −1, otherwise it
is chosen to be around −0.05.

At the end of each EM iteration, we sampled the current
model (7), and computed the Kendall’s tau distance between
the generated permutation π and the true permutation σ∗ for
each of the Q examples, and report the performance in terms
of the average distance.

In addition to the sampling procedure we proposed to es-
timate the right-hand side of (9), we also tried using the true
permutation σ∗ along with the corresponding true type t∗ in
place of the sampled values to see how well the learning pro-
cedure can do.
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Figure 1: Learning performance over permutations when
RHS is estimated using sampling (Sampling), or the true per-
mutation (True). All results are averaged over 10 runs. Our
model (Typed) significantly outperforms the type agnostic
model (4) (UnTyped).

Figure 1 shows that our model significantly outperforms
the type agnostic model proposed in [Klementiev et al., 2008]
for this setting. While the type agnostic model (UnTyped
Sampling) achieves an average distance of 34, our model
(Typed Sampling) requires an average distance of 19, repre-
senting about 44% reduction in the number of adjacent trans-
positions at convergence. Moreover, the model converges
quickly, and its performance approaches the case when true
permutations and their corresponding types are known.

5.2 Aggregating Typed Top-K Lists
We now consider the case of combining typed top-k lists us-
ing the augmented Kendall’s tau distance (see Section 2.1) in
(7). The setup and the data was produced similarly to per-
mutations experiments in Section 2.1. However, when gen-
erating top-k, k = 30 objects were selected from a pool of
n = 100.

We compare our top-k list instantiated model against the
corresponding type agnostic model, reporting results in Fig-
ure 2 in terms of the average augmented Kendall’s tau dis-
tance from the true top-k lists. Again, our framework sig-
nificantly outperforms the type agnostic model, reducing the
average augmented Kendall’s tau distance to true lists by ap-
proximately 31, resulting in 47% reduction in the number of
adjacent transpositions.

5.3 Discussion
In many practical applications, constituent rankers are likely
to specialize in some input domains, while performing poorly
in others. Both experiments demonstrate that the model we
proposed can take advantage of the latent type information
to learn to aggregate the votes of such rankers effectively. It
produces better joint rankings than the type agnostic model
of [Klementiev et al., 2008].
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Figure 2: Learning performance over top-k lists when RHS
is estimated using sampling (Sampling), or the true top-k list
(True). All results are averaged over 10 runs. Our model
(Typed) significantly outperforms the type agnostic model (4)
(UnTyped).

The EM-based learning algorithm we propose is robust,
converging quickly with just Q = 100 examples across mul-
tiple runs. It is worth emphasizing that the additional expres-
sivity of the model we propose does not prevent it from learn-
ing from a small number of examples successfully. Addition-
ally, the computational requirements scale linearly with the
number of topics.

6 Relevant Work
Modeling ranked data is an extensively studied problem in
statistics, information retrieval, and machine learning litera-
ture. Distance-based models with Kendall’s and Spearman’s
metrics for fully ranked data were introduced and investigated
in [Mallows, 1957]. A number of new metrics for partial
rankings were since introduced and analyzed (e.g. [Critchlow,
1985; Estivill-Castro et al., 1993; Fagin et al., 2003]), and
various extensions to the model itself have been proposed
(e.g. [Fligner and Verducci, 1986]); see [Marden, 1995] for
an excellent overview. [Murphy and Martin, 2003] used mix-
tures of Mallows models (3) to analyze ranking data from
heterogeneous populations, and [Busse et al., 2007] propose
a method for clustering such data. A large body of work also
exists on mixture models (or LCA, [Lazarsfeld and Henry,
1968]).

While a number of heuristic [Shaw and Fox, 1994; Dwork
et al., 2001] and supervised learning approaches [Liu et al.,
2007] exist for rank aggregation, few learn to combine rank-
ings without supervision.

Most directly related to our work is the generalization to
multiple input rankings proposed and studied in [Lebanon
and Lafferty, 2002]; [Klementiev et al., 2008] derived an EM-
based algorithm to estimate its parameters. We extend their
model to include the notion of domain expertise.



7 Conclusions
In this work, we propose an unsupervised learning frame-
work for rank aggregation over votes of rankers with domain-
specific expertise. We introduce a model, derive an EM-based
algorithm to estimate its parameters, and propose methods
to make learning efficient. Finally, we evaluate the frame-
work on combining full rankings and on combining top-k
lists, and demonstrate that it significantly and robustly out-
performs the domain agnostic model proposed in [Klemen-
tiev et al., 2008]. This approach is potentially applicable to
many problems in Information Retrieval and Natural Lan-
guage Processing, e.g. meta-search or aggregation of ma-
chine translation systems’ output, where domain variabil-
ity presents a major challenge [Koehn and Schroeder, 2007;
Geng et al., 2008]. Developing unsupervised techniques is
particularly important as annotated data is very difficult to
obtain for ranking problems, especially for multiple domains.

Acknowledgments
We thank Ming-Wei Chang, Vivek Srikumar, and the anony-
mous reviewers for their valuable suggestions. This work is
supported by NSF grant ITR IIS-0428472, DARPA funding
under the Bootstrap Learning Program, Swiss NSF scholar-
ship PBGE22-119276, and by MIAS, a DHS-IDS Center for
Multimodal Information Access and Synthesis at UIUC.

References
[Busse et al., 2007] Ludwig M. Busse, Peter Orbanz, and

Joachim M. Buhmann. Cluster analysis of heterogeneous
rank data. In Proc. of the International Conference on Ma-
chine Learning (ICML), 2007.

[Critchlow, 1985] Douglas E. Critchlow. Metric Methods for
Analyzing Partially Ranked Data, volume 34 of Lecture
Notes in Statistics. Springer-Verlag, 1985.

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and
D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical So-
ciety, 39:1–38, 1977.

[Diaconis and Graham, 1977] Persi Diaconis and R. L. Gra-
ham. Spearman’s footrule as a measure of disarray. Jour-
nal of the Royal Statistical Society, 39:262–268, 1977.

[Diaconis and Saloff-Coste, 1998] P. Diaconis and L. Saloff-
Coste. What do we know about the Metropolis algo-
rithm? Journal of Computer and System Sciences, 57:20–
36, 1998.

[Dwork et al., 2001] Cynthia Dwork, Ravi Kumar, Moni
Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proc. of the International World Wide Web
Conference (WWW), pages 613–622, 2001.

[Estivill-Castro et al., 1993] Vladimir Estivill-Castro,
Heikki Mannila, and Derick Wood. Right invariant
metrics and measures of presortedness. Discrete Applied
Mathematics, 42:1–16, 1993.

[Fagin et al., 2003] Ronald Fagin, Ravi Kumar, and
D. Sivakumar. Comparing top k lists. SIAM Journal on
Discrete Mathematics, 17:134–160, 2003.

[Fligner and Verducci, 1986] M. A. Fligner and J. S. Ver-
ducci. Distance based ranking models. Journal of the
Royal Statistical Society, 48:359–369, 1986.

[Geng et al., 2008] Xiubo Geng, Tie-Yan Liu, Tao Qin, An-
drew Arnold, Hang Li, and Heung-Yeung Shum. Query
dependent ranking using k-nearest neighbor. In SIGIR,
pages 115–122, 2008.

[Hastings, 1970] W. K. Hastings. Monte carlo sampling
methods using markov chains and their applications.
Biometrika, 57(1):97–109, April 1970.

[Joachims, 2002] T. Joachims. Unbiased evaluation of re-
trieval quality using clickthrough data. In SIGIR Work-
shop on Mathematical/Formal Methods in Information Re-
trieval, 2002.

[Klementiev et al., 2008] Alexandre Klementiev, Dan Roth,
and Kevin Small. Unsupervised rank aggregation with
distance-based models. In Proc. of the International Con-
ference on Machine Learning (ICML), 2008.

[Koehn and Schroeder, 2007] Philipp Koehn and Josh
Schroeder. Experiments in domain adaptation for
statistical machine translation. In ACL 2007, Second
Workshop on Statistical Machine Translation, Prague,
Czech Republic, 2007.

[Lazarsfeld and Henry, 1968] Paul F. Lazarsfeld and Neil W.
Henry. Latent Structure Analysis. Houghton Mifflin, 1968.

[Lebanon and Lafferty, 2002] Guy Lebanon and John Laf-
ferty. Cranking: Combining rankings using conditional
probability models on permutations. In Proc. of the Inter-
national Conference on Machine Learning (ICML), 2002.

[Liu et al., 2007] Yu-Ting Liu, Tie-Yan Liu, Tao Qin, Zhi-
Ming Ma, and Hang Li. Supervised rank aggregation.
In Proc. of the International World Wide Web Conference
(WWW), 2007.

[Mallows, 1957] C. L. Mallows. Non-null ranking models.
Biometrika, 44:114–130, 1957.

[Marden, 1995] John I. Marden. Analyzing and Modeling
Rank Data. Chapman & Hall, 1995.

[Murphy and Martin, 2003] Thomas Brendan Murphy and
Donal Martin. Mixtures of distance-based models for
ranking data. Computational Statistics & Data Analysis,
41:645–655, 2003.

[Neal, 1996] Radford M. Neal. Sampling from multimodal
distribution using tempered transitions. Statistics and
Computing, 6:353–366, 1996.

[Rosti et al., 2007] Antti-Veikko I. Rosti, Necip Fazil Ayan,
Bing Xiang, Spyros Matsoukas, Richard Schwartz, and
Bonnie J. Dorr. Combining outputs from multiple machine
translation systems. In Proc. of the Annual Meeting of the
North American Association of Computational Linguistics
(NAACL), pages 228–235, 2007.

[Shaw and Fox, 1994] Joseph A. Shaw and Edward A. Fox.
Combination of multiple searches. In Text REtrieval Con-
ference (TREC), pages 243–252, 1994.


